Spelling suggestions: "subject:"mikroskopische bildtheorie"" "subject:"mikroskopische bindtheorie""
1 |
Microscopic theory and analysis of the mechanical properties of magneto-sensitive elastomers in a homogeneous magnetic fieldIvaneiko, Dmytro 08 November 2016 (has links) (PDF)
Magneto-sensitive elastomers (MSEs) establish a special class of smart materials, which are able to change their shape and mechanical behavior under external magnetic field. Nowadays, MSEs are one of the most perspective smart materials, since they can be used for design of functionally integrated lightweight structures in sensors, robotics, actuators and damper applications.
MSEs typically consist of micron-sized magnetizable particles (e.g. carbonyl iron) dispersed within a non-magnetic elastomeric matrix. The spatial distribution of magnetic particles in MSEs can be either isotropic or anisotropic, depending on whether they have been aligned by an applied magnetic field before the cross-linking of the polymer. Depending on the magnetic properties of the particles, their shape, size and spatial distribution, the MSEs can exhibit different mechanical behavior. Most experimental studies show that MSEs with isotropic distribution of magnetic particles demonstrate a uniaxial expansion along the magnetic field. On the other side, it was shown experimentally that MSEs with anisotropic particle distributions demonstrate a uniaxial contraction along the magnetic field. Also, the experimental works show that the shear moduli of MSEs increase with increasing strength of the magnetic field and depend on the magnetic properties, volume fraction and spatial distribution of particles.
Different analytical approaches were used in theoretical studies of the mechanical behavior of MSEs. They can be roughly classified as phenomenological, continuum-mechanics and microscopic approaches. In the phenomenological approaches, the expansion into a series of the shear modulus as a function of the strength of the magnetic field has been proposed, the coefficients of the expansion being considered as phenomenological fitting parameters. In the continuum-mechanics approach, an MSE is considered as continuous magnetic media. It allows us to determine the shape and the change in volume of a spherical MSE sample, placed in a uniform magnetic field. However, this approach is restricted to homogeneous particle distributions. The microscopic approach has a clear advantage, while a discrete particle distribution and pair-wise interactions between induced magnetic dipoles can be considered explicitly.
The aim of the present work is to develop a microscopic theory, which properly describes the mechanical behavior of MSEs in the external magnetic field. The theory takes a microscopic structure, finite shape of the samples and magneto-mechanical coupling between particle positions and sample deformation explicitly into account.
|
2 |
Microscopic theory and analysis of the mechanical properties of magneto-sensitive elastomers in a homogeneous magnetic fieldIvaneiko, Dmytro 15 September 2016 (has links)
Magneto-sensitive elastomers (MSEs) establish a special class of smart materials, which are able to change their shape and mechanical behavior under external magnetic field. Nowadays, MSEs are one of the most perspective smart materials, since they can be used for design of functionally integrated lightweight structures in sensors, robotics, actuators and damper applications.
MSEs typically consist of micron-sized magnetizable particles (e.g. carbonyl iron) dispersed within a non-magnetic elastomeric matrix. The spatial distribution of magnetic particles in MSEs can be either isotropic or anisotropic, depending on whether they have been aligned by an applied magnetic field before the cross-linking of the polymer. Depending on the magnetic properties of the particles, their shape, size and spatial distribution, the MSEs can exhibit different mechanical behavior. Most experimental studies show that MSEs with isotropic distribution of magnetic particles demonstrate a uniaxial expansion along the magnetic field. On the other side, it was shown experimentally that MSEs with anisotropic particle distributions demonstrate a uniaxial contraction along the magnetic field. Also, the experimental works show that the shear moduli of MSEs increase with increasing strength of the magnetic field and depend on the magnetic properties, volume fraction and spatial distribution of particles.
Different analytical approaches were used in theoretical studies of the mechanical behavior of MSEs. They can be roughly classified as phenomenological, continuum-mechanics and microscopic approaches. In the phenomenological approaches, the expansion into a series of the shear modulus as a function of the strength of the magnetic field has been proposed, the coefficients of the expansion being considered as phenomenological fitting parameters. In the continuum-mechanics approach, an MSE is considered as continuous magnetic media. It allows us to determine the shape and the change in volume of a spherical MSE sample, placed in a uniform magnetic field. However, this approach is restricted to homogeneous particle distributions. The microscopic approach has a clear advantage, while a discrete particle distribution and pair-wise interactions between induced magnetic dipoles can be considered explicitly.
The aim of the present work is to develop a microscopic theory, which properly describes the mechanical behavior of MSEs in the external magnetic field. The theory takes a microscopic structure, finite shape of the samples and magneto-mechanical coupling between particle positions and sample deformation explicitly into account.
|
3 |
Mikroskopische Theorie der optischen Eigenschaften indirekter Halbleiter-QuantenfilmeImhof, Sebastian 01 February 2012 (has links) (PDF)
Indirekte Halbleiter, wie beispielsweise Silizium, zählen bei technischen Anwendungen zu den wichtigsten halbleitenden Materialien. Die indirekte Bandstruktur führt jedoch dazu, dass diese Materialien schlechte Lichtemitter sind. Die theoretische Beschreibung der optischen Eigenschaften dieser Materialien wurde in früheren Betrachtungen über phänomenologische Ansätze verfolgt. In dieser Arbeit wird eine mikroskopische Theorie, basierend auf den Heisenberg-Bewegungsgleichungen, entwickelt, um die Prozesse im Bereich der indirekten Energielücke zu beschreiben.
Nach Herleitung der relevanten Gleichungen wird im ersten Anwendungskapitel die Absorption und optische Verstärkung im thermischen Gleichgewicht diskutiert. Bei der Diskussion wird insbesondere auf den Unterschied zu direkten Halbleitern eingegangen. Es zeigt sich, dass sich die optische Verstärkung in indirekten Halbleitern fundamental von denen in direkten unterscheidet. Im Gegensatz zum direkten Halbleiter kann die maximale optische Verstärkung eines indirekten Übergangs die maximale Absorption um Größenordnungen übertreffen.
Im zweiten Anwendungsteil werden Nichtgleichgewichtsphänomene diskutiert. Durch starke optische Anregung kann eine hohe Elektronenkonzentration am Gamma-Punkt erzeugt werden. Da das globale Bandstrukturminimum aber am Rand der Brillouinzone liegt, verweilen die Elektronen nicht lange dort, sondern streuen in das Leitungsbandminimum. Dieser Prozess der sogenannten Intervalley-Streuung wird im Hinblick auf Gedächtniseffekte diskutiert. Nach dem Streuprozess der Elektronen besitzt das System eine Überschussenergie, die sich in einem Aufheizen der Ladungsträger zeigt. Das zweite Nichtgleichgewichtsphänomen ist das Abkühlen des Lochsystems, welches aufgrund der Trennung der Elektronen und Löcher in indirekten Halbleiter auch im Experiment getrennt untersucht werden kann. Mithilfe eines Experiment-Theorie-Vergleichs wird ein schneller Elektron-Loch-Streuprozess nachgewiesen, der dazu führt, dass in indirekten Halbleitern das Thermalisieren und Equilibrieren der Elektronen und Löcher auf der gleichen Zeitskala stattfindet.
|
4 |
Mikroskopische Theorie der optischen Eigenschaften indirekter Halbleiter-Quantenfilme: Mikroskopische Theorie der optischen Eigenschaftenindirekter Halbleiter-QuantenfilmeImhof, Sebastian 19 December 2011 (has links)
Indirekte Halbleiter, wie beispielsweise Silizium, zählen bei technischen Anwendungen zu den wichtigsten halbleitenden Materialien. Die indirekte Bandstruktur führt jedoch dazu, dass diese Materialien schlechte Lichtemitter sind. Die theoretische Beschreibung der optischen Eigenschaften dieser Materialien wurde in früheren Betrachtungen über phänomenologische Ansätze verfolgt. In dieser Arbeit wird eine mikroskopische Theorie, basierend auf den Heisenberg-Bewegungsgleichungen, entwickelt, um die Prozesse im Bereich der indirekten Energielücke zu beschreiben.
Nach Herleitung der relevanten Gleichungen wird im ersten Anwendungskapitel die Absorption und optische Verstärkung im thermischen Gleichgewicht diskutiert. Bei der Diskussion wird insbesondere auf den Unterschied zu direkten Halbleitern eingegangen. Es zeigt sich, dass sich die optische Verstärkung in indirekten Halbleitern fundamental von denen in direkten unterscheidet. Im Gegensatz zum direkten Halbleiter kann die maximale optische Verstärkung eines indirekten Übergangs die maximale Absorption um Größenordnungen übertreffen.
Im zweiten Anwendungsteil werden Nichtgleichgewichtsphänomene diskutiert. Durch starke optische Anregung kann eine hohe Elektronenkonzentration am Gamma-Punkt erzeugt werden. Da das globale Bandstrukturminimum aber am Rand der Brillouinzone liegt, verweilen die Elektronen nicht lange dort, sondern streuen in das Leitungsbandminimum. Dieser Prozess der sogenannten Intervalley-Streuung wird im Hinblick auf Gedächtniseffekte diskutiert. Nach dem Streuprozess der Elektronen besitzt das System eine Überschussenergie, die sich in einem Aufheizen der Ladungsträger zeigt. Das zweite Nichtgleichgewichtsphänomen ist das Abkühlen des Lochsystems, welches aufgrund der Trennung der Elektronen und Löcher in indirekten Halbleiter auch im Experiment getrennt untersucht werden kann. Mithilfe eines Experiment-Theorie-Vergleichs wird ein schneller Elektron-Loch-Streuprozess nachgewiesen, der dazu führt, dass in indirekten Halbleitern das Thermalisieren und Equilibrieren der Elektronen und Löcher auf der gleichen Zeitskala stattfindet.
|
Page generated in 0.0729 seconds