• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 6
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Coordination Chemistry of Monocarboxylate and Aminocarboxylate Complexes at the Water/Goethite Interface

Norén, Katarina January 2007 (has links)
<p>This thesis is a summary of five papers with focus on adsorption processes of various monocarboxylates and aminocarboxylates at the water/goethite interface. Interaction of organic acids at the water/mineral interfaces are of importance in biogeochemical processes, since such processes have potential to alter mobility and bioavailability of the acids and metal ions.</p><p>In order to determine the coordination chemistry of acetate, benzoate, cyclohexanecarboxylate, sarcosine, MIDA (methyliminediacetic acid), EDDA (ethylenediamine-N,N’-diacetic acid) and EDTA (ethylenediamine-N,N’-tetraacetic acid) upon adsorption to the goethite (alpha-FeOOH) surface, a combination of quantitative measurements with attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) was utilized.</p><p>Over the pH range studied here (pH 3- 9) all ligands, except for sarcosine, have been found to form surface complexes with goethite. In general, theses were characterized as outer sphere surface complexes i.e. with no direct interaction with surface Fe(III) metal ions. Furthermore, two types of different outer-sphere complexes were identified, the solvent-surface hydration-separated ion pair, and hydration-shared ion pair. For the monocarboxylate surface complexes distinction between these two could be made. At high pH values the solvent-surface hydration-separated ion pair was the predominating complex, while at low pH the surface complex is stabilized through the formation of strong hydrogen bonds with the goethite surface. However, it was not possible to clearly separate between the two outer-sphere complexes for coordination of the aminocarboxylates with the surface of goethite. Additionally, EDDA also formed an inner-sphere surface complex at high pH values. The EDDA molecule was suggested to coordinate to the surface by forming a five membered ring with an iron at the goethite surface, through the amine and carboxylate groups.</p><p>Contrary to the other ligands studied, EDTA significantly induced dissolution of goethite. Some of the dissolved iron, in the form of the highly stable FeEDTA- solution complex, was indicated to re-adsorb to the mineral surface as a ternary complex. Similar ternary surface complexes were also found in the Ga(III)EDTA/goethite system, and quantitative and spectroscopic studies on adsorption of Ga(III) in presence and absence of EDTA showed that EDTA considerably effects speciation of gallium at goethite surface.</p><p>The collective results in this thesis show that the affinity of these ligands for the surface of goethite is primarily governed by their chemical composition and structure, and especially important are the types, numbers and relative position of functional groups within the molecular structure.</p>
2

Soil Organic Nitrogen - Investigation of Soil Amino Acids and Proteinaceous Compounds

Ma, Li 01 May 2015 (has links)
Soil carbon (C) and nitrogen (N) are predominantly in organic form. Proteins/ peptides, as an important organic form of N, constitute a substantial part of soil organic matter. On one hand, proteins/peptides are an important N source for plants and microorganisms, particularly in soils where inorganic N is limited. On the other hand, their stabilization in soils by forming organo-mineral associates or macromolecule complex reduces the C loss as CO2 into the atmosphere. Therefore, studies on the turnover, abundance, composition, and stability of proteins/peptides are of crucial importance to agricultural productivity and environmental sustainability. In the first part of this study, the bioavailability and distribution of amino acids, (building block of proteins/peptides), were investigated, in soils across the North-South and West-East transects of continental United States. The second part of this study aimed to understand the variations of organic C speciation in soils of continental United States. Previous investigations of the interactions between soil minerals and proteins/peptides were mostly limited to batch sorption experiments in labs, seldom of which gave the details at the molecular scales. Therefore, in the third part of this study, the molecular orientation of self-assembled oligopeptides on mineral surfaces was investigated by employing synchrotron based polarization-dependent Near Edge X-ray Adsorption Fine Structure Spectroscopy (NEXAFS) techniques. Specific aims of this study were: 1) to assess potentially bioavailable pool of proteinaceous compounds and the immediately bioavailable pool of free amino acids in surface and subsurface soils of various ecosystems; 2) to evaluate the relationship between environmental factors and levels/composition of the two pools; 3) to investigate the organic C speciation in soils of various land use; and 4) to understand molecular level surface organization of small peptides on mineral surfaces. The levels of free amino acids and hydrolysable amino acids which represent the potentially bioavailable pool of proteinaceous compounds in A-horizon soils were significantly high than in C-horizon soils due to the accumulation of organic matter in surface. On average, free amino acids accounted for less than 4 % of hydrolysable amino acids which represent the total proteinaceous compounds in soils. The composition of free amino acids was significantly different between surface soil and subsurface soil and was significantly influenced by mean annual temperature and precipitation. A relatively uniform composition of hydrolysable amino acids was observed irrespective of a wide range of land use. Significant variations were observed for the levels of free and hydrolysable amino acids along mean annual temperature and precipitation gradients, as well as among vegetation types of continental USA, suggesting levels of free and hydrolysable amino acids were associated with the above-ground biomass and root distribution. Organic C speciation investigation revealed the presence of carboxylic-C (38%), aliphatic-C (~ 22%), aromatic-C (~ 18%), O/N-alkyl-C (~ 16%), and phenolic-C (< 6%). Factors such as temperature and vegetation cover were revealed in this study to account for the fluctuations of the proportions of aromatic-C and phenolic-C, in particular. Phenolic-C may serve as a good indicator for the effect of temperature or vegetation on the composition of SOC. The average composition of soil organic C, over the continental scale, was relatively uniform over various soil ecosystems and between two soil horizons irrespective of surface organic C content. Polarization dependent NEXAFS analysis showed the oligopeptides tend to orient on mineral surface with an average tilt angle of 40 ° between the molecular chain and the mineral surface. / Ph. D.
3

Coordination Chemistry of Monocarboxylate and Aminocarboxylate Complexes at the Water/Goethite Interface

Norén, Katarina January 2007 (has links)
This thesis is a summary of five papers with focus on adsorption processes of various monocarboxylates and aminocarboxylates at the water/goethite interface. Interaction of organic acids at the water/mineral interfaces are of importance in biogeochemical processes, since such processes have potential to alter mobility and bioavailability of the acids and metal ions. In order to determine the coordination chemistry of acetate, benzoate, cyclohexanecarboxylate, sarcosine, MIDA (methyliminediacetic acid), EDDA (ethylenediamine-N,N’-diacetic acid) and EDTA (ethylenediamine-N,N’-tetraacetic acid) upon adsorption to the goethite (alpha-FeOOH) surface, a combination of quantitative measurements with attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) was utilized. Over the pH range studied here (pH 3- 9) all ligands, except for sarcosine, have been found to form surface complexes with goethite. In general, theses were characterized as outer sphere surface complexes i.e. with no direct interaction with surface Fe(III) metal ions. Furthermore, two types of different outer-sphere complexes were identified, the solvent-surface hydration-separated ion pair, and hydration-shared ion pair. For the monocarboxylate surface complexes distinction between these two could be made. At high pH values the solvent-surface hydration-separated ion pair was the predominating complex, while at low pH the surface complex is stabilized through the formation of strong hydrogen bonds with the goethite surface. However, it was not possible to clearly separate between the two outer-sphere complexes for coordination of the aminocarboxylates with the surface of goethite. Additionally, EDDA also formed an inner-sphere surface complex at high pH values. The EDDA molecule was suggested to coordinate to the surface by forming a five membered ring with an iron at the goethite surface, through the amine and carboxylate groups. Contrary to the other ligands studied, EDTA significantly induced dissolution of goethite. Some of the dissolved iron, in the form of the highly stable FeEDTA- solution complex, was indicated to re-adsorb to the mineral surface as a ternary complex. Similar ternary surface complexes were also found in the Ga(III)EDTA/goethite system, and quantitative and spectroscopic studies on adsorption of Ga(III) in presence and absence of EDTA showed that EDTA considerably effects speciation of gallium at goethite surface. The collective results in this thesis show that the affinity of these ligands for the surface of goethite is primarily governed by their chemical composition and structure, and especially important are the types, numbers and relative position of functional groups within the molecular structure.
4

Phase transformation and surface chemistry of secondary iron minerals formed from acid mine drainage

Jönsson, Jörgen January 2003 (has links)
The mining of sulphidic ore to extract metals such as zinc and copper produces huge quantities of waste material. The weathering and oxidation of the waste produces what is commonly known as Acid Mine Drainage (AMD), a dilute sulphuric acid rich in Fe(II) and heavy metals. This thesis serves to summarise five papers reporting how the precipitation of Fe(III) phases can attenuate the contamination of heavy metals by adsorption processes. Schwertmannite (Fe8O8(OH)6SO4) is a common Fe(III) mineral precipitating in AMD environments at pH 3-4. The stability and surface chemistry of this mineral was investigated. It was shown that the stability depended strongly on pH and temperature, an increase in either promoted transformation to goethite (α-FeOOH). Two pH dependent surface species of SO42- were detected with infrared (ATR-FTIR) spectroscopy. The adsorption of Cu(II), Pb(II) and Zn(II) to schwertmannite occurred at lower pH than to goethite, whereas Cd(II) adsorption occurred in a similar pH range on both schwertmannite and goethite. Extended x-ray absorption fine structure (EXAFS) spectroscopy suggests two surface species for Cu(II) and Cd(II) at the schwertmannite surface. Cu(II) adsorbs monodentately and Cd(II) bridging bidentately to adsorbed SO42-. Both metal ions also adsorb in a bridging bidentate mode to the surface hydroxyl groups. At pH 7.5 up to 2.7 μmol Cd(II) m-2 could be adsorbed to schwertmannite, indicating a large adsorption capacity for this mineral. The acid-base properties of two NOM samples were characterised and could be well described as diprotic acids below pH 6. The adsorption of NOM to schwertmannite and goethite was very similar and adsorption occured in a very wide pH range. High concentrations of NOM increased the adsorption of Cu(II) to goethite at low pH whereas a slight decrease was noted at low concentrations of NOM. No effect was detected in the schwertmannite system. The formation of Fe(III) phases from precipitation of AMD was shown to be very pH dependent. At pH 5.5 a mixture of minerals, including schwertmannite, formed whereas at pH 7 only lepidocrocite (γ-FeOOH) formed. The concentration of Zn(II) in AMD could by adsorption/coprecipitation be reduced to environmentally acceptable levels.
5

Phase transformation and surface chemistry of secondary iron minerals formed from acid mine drainage

Jönsson, Jörgen January 2003 (has links)
<p>The mining of sulphidic ore to extract metals such as zinc and copper produces huge quantities of waste material. The weathering and oxidation of the waste produces what is commonly known as Acid Mine Drainage (AMD), a dilute sulphuric acid rich in Fe(II) and heavy metals. This thesis serves to summarise five papers reporting how the precipitation of Fe(III) phases can attenuate the contamination of heavy metals by adsorption processes. </p><p>Schwertmannite (Fe8O8(OH)6SO4) is a common Fe(III) mineral precipitating in AMD environments at pH 3-4. The stability and surface chemistry of this mineral was investigated. It was shown that the stability depended strongly on pH and temperature, an increase in either promoted transformation to goethite (α-FeOOH). Two pH dependent surface species of SO42- were detected with infrared (ATR-FTIR) spectroscopy.</p><p>The adsorption of Cu(II), Pb(II) and Zn(II) to schwertmannite occurred at lower pH than to goethite, whereas Cd(II) adsorption occurred in a similar pH range on both schwertmannite and goethite. Extended x-ray absorption fine structure (EXAFS) spectroscopy suggests two surface species for Cu(II) and Cd(II) at the schwertmannite surface. Cu(II) adsorbs monodentately and Cd(II) bridging bidentately to adsorbed SO42-. Both metal ions also adsorb in a bridging bidentate mode to the surface hydroxyl groups. At pH 7.5 up to 2.7 μmol Cd(II) m-2 could be adsorbed to schwertmannite, indicating a large adsorption capacity for this mineral.</p><p>The acid-base properties of two NOM samples were characterised and could be well described as diprotic acids below pH 6. The adsorption of NOM to schwertmannite and goethite was very similar and adsorption occured in a very wide pH range.</p><p>High concentrations of NOM increased the adsorption of Cu(II) to goethite at low pH whereas a slight decrease was noted at low concentrations of NOM. No effect was detected in the schwertmannite system. </p><p>The formation of Fe(III) phases from precipitation of AMD was shown to be very pH dependent. At pH 5.5 a mixture of minerals, including schwertmannite, formed whereas at pH 7 only lepidocrocite (γ-FeOOH) formed. The concentration of Zn(II) in AMD could by adsorption/coprecipitation be reduced to environmentally acceptable levels.</p>
6

Chemical Processes at the Water-Manganite (γ-MnOOH) Interface / Kemiska Processer vid gränsytan mellan vatten och manganit (γ-MnOOH)

Ramstedt, Madeleine January 2004 (has links)
The chemistry of mineral surfaces is of great importance in many different areas including natural processes occurring in oceans, rivers, lakes and soils. Manganese (hydr)oxides are one important group to these natural processes, and the thermodynamically most stable trivalent manganese (hydr)oxide, manganit (γ-MnOOH), is studied in this thesis. This thesis summarises six papers in which the surface chemistry of synthetic manganite has been investigated with respect to surface acid-base properties, dissolution, and adsorption of Cd(II) and the herbicide N-(phosphonomethyl)glycine (glyphosate, PMG). In these papers, a wide range of analysis techniques were used, including X-ray photoelectron spectroscopy (XPS), extended X-ray absorption fine structure (EXAFS) spectroscopy, Fourier transform infra-red (FTIR) spectroscopy, atomic force microscopy (AFM), scanning electron microscopy (SEM), X-ray diffraction (XRD), potentiometry, electrophoretic mobility measurements and wet chemical techniques, in order to obtain a more complete understanding of the different processes occurring at the manganite-water interface. From the combined use of these techniques, a 1-pKa acid-base model was established that is valid at pH&gt;6. The model includes a Na+ interaction with the surface: =MnOH2+½ --&gt; =MnOH-½ + H+ log β0 (intr.) = -8.20 = -pHiep =MnOH2+½ + Na+ --&gt; =MnOHNa+½ + H+ log β0 (intr.) = -9.64 At pH&lt;6 the manganite crystals dissolve and disproportionate into pyrolusite (β-MnO2) and Mn(II)-ions in solution according to: 2 γ-MnOOH + 2H+ --&gt; β-MnO2 + Mn2+ + 2H2O log K0 = 7.61 ± 0.10 The adsorption and co-adsorption of Cd(II) and glyphosate at the manganite surface was studied at pH&gt;6. Cd(II) adsorption displays an adsorption edge at pH~8.5. Glyphosate adsorbs over the entire pH range, but the adsorption decreases with increasing pH. When the two substances are co-adsorbed, the adsorption of Cd(II) is increased at low pH but decreased at high pH. The adsorption of glyphosate is increased in the entire pH range in the presence of Cd(II). From XPS, FTIR and EXAFS it was found that glyphosate and Cd(II) form inner sphere complexes. The binary Cd(II)-surface complex is bonded by edge sharing of Mn and Cd octahedra on the (010) plane of manganite. Glyphosate forms inner-sphere complexes through an interaction between the phosphonate group and the manganite surface. The largest fraction of this binary glyphosate complex is protonated throughout the pH range. A ternary surface complex is also present, and its structure is explained as type B ternary surface complex (surface-glyphosate-Cd(II)). The chelating rings between the Cd(II) and glyphosate, found in aqueous complexes, are maintained at the surface, and the ternary complex is bound to the surface through the phosphonate group of the ligand.

Page generated in 0.045 seconds