• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 13
  • 1
  • Tagged with
  • 28
  • 16
  • 7
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Régularité des cônes et d'ensembles minimaux de dimension 3 dans R4

Luu, Tien Duc 12 December 2011 (has links) (PDF)
On étudie dans cette thèse la régularité des cônes et d'ensembles de dimension 3 dans l'espace Euclidien de dimension 4.Dans la première partie, on étudie d'abord la régularité Bi-Hölderienne des cônes minimaux de dimension 3 dans l'espace Euclidien de dimension 4. Ceci nous permet ensuite de montrer qu'il existe un difféomorphisme locale entre un cône minimal de dimension 3 dans l'espace Euclidien de dimension 4 et un cône minimal de dimension 3, de type P, Y ou T, loin d'origine. La méthode est la même que pour les ensembles minimaux de dimension 2. On construit des compétiteurs et on se ramène aux situations connues des ensembles minimaux de dimension 2 dans l'espace Euclidien de dimension 3.Dans la deuxième partie, on utilise le résultat de la première partie pour donner quelques résultats de régularité Bi-Hölderienne pour les ensembles minimaux de dimension 3 dans l'espace Euclidien de dimension 4. On s'intéresse aussi aux ensembles minimaux de Mumford-Shah et on obtient un résultat de l'existence d'un point de type T.
2

Régularité des cônes et d’ensembles minimaux de dimension 3 dans R4 / Regularity of three-dimensional minimal cones and sets in R4

Luu, Tien Duc 12 December 2011 (has links)
On étudie dans cette thèse la régularité des cônes et d'ensembles de dimension 3 dans l'espace Euclidien de dimension 4.Dans la première partie, on étudie d'abord la régularité Bi-Hölderienne des cônes minimaux de dimension 3 dans l'espace Euclidien de dimension 4. Ceci nous permet ensuite de montrer qu'il existe un difféomorphisme locale entre un cône minimal de dimension 3 dans l'espace Euclidien de dimension 4 et un cône minimal de dimension 3, de type P, Y ou T, loin d'origine. La méthode est la même que pour les ensembles minimaux de dimension 2. On construit des compétiteurs et on se ramène aux situations connues des ensembles minimaux de dimension 2 dans l'espace Euclidien de dimension 3.Dans la deuxième partie, on utilise le résultat de la première partie pour donner quelques résultats de régularité Bi-Hölderienne pour les ensembles minimaux de dimension 3 dans l'espace Euclidien de dimension 4. On s'intéresse aussi aux ensembles minimaux de Mumford-Shah et on obtient un résultat de l'existence d'un point de type T. / In this thesis we study the problems of regularity of three-dimensional minimal cones and sets in l'espace Euclidien de dimension 4In the first part we study the Hölder regularity for minimal cones of dimension 3 in l'espace Euclidien de dimension 4. Then we use this for showing that there exists a local diffeomorphic mapping between a minimal cone of dimension 3 and a minimal cone of dimension 3 of type P, Y or T, away from the origin. The techniques used here are the same as the ones for the regularity of two-dimensional minimal sets. We construct some competitors to reduce to the known situation of two-dimensional minimal sets in l'espace Euclidien de dimension 3.In the second part, we use the first part to give somme results of the Hölder regularity for three-dimensional minimal sets in l'espace Euclidien de dimension 4. We interested also in Mumford-Shah minimal sets and we get a result of the existence of a T-point.
3

Minimal sets, existence and regularity / Ensembles minimaux, existence et régularité

Fang, Yangqin 21 September 2015 (has links)
Cette thèse s’intéresse principalement à l’existence et à la régularité desensembles minimaux. On commence par montrer, dans le chapitre 3, que le problème de Plateau étudié par Reifenberg admet au moins une solution. C’est-à-dire que, si l’onse donne un ensemble compact B⊂R^n et un sous-groupe L du groupe d’homologie de Čech H_(d-1) (B;G) de dimension (d-1) sur un groupe abelien G, on montre qu’il existe un ensemble compact E⊃B tel que L est contenu dans le noyau de l’homomorphisme H_(d-1) (B;G)→H_(d-1) (E;G) induit par l’application d’inclusion B→E, et pour lequel la mesure de Hausdorff H^d (E∖B) est minimale (sous ces contraintes). Ensuite, on montre au chapitre 4, que pour tout ensemble presque minimal glissant E de dimension 2, dans un domaine régulier Σ ressemblant localement à un demi espace, associé à la frontière glissante ∂Σ, et tel que E⊃∂Σ, il se trouve qu’à la frontière E est localement équivalent, par un homéomorphisme biHöldérien qui préserve la frontière, à un cône minimal glissant contenu dans un demi plan Ω, avec frontière glissante ∂Ω. De plus les seuls cônes minimaux possibles dans ce cas sont ∂Ω seul, ou son union avec un cône de type P_+ ou Y_+. / This thesis focuses on the existence and regularity of minimal sets. First we show, in Chapter 3, that there exists (at least) a minimizerfor Reifenberg Plateau problems. That is, Given a compact set B⊂R^n, and a subgroup L of the Čech homology group H_(d-1) (B;G) of dimension (d-1)over an abelian group G, we will show that there exists a compact set E⊃B such that L is contained in the kernel of the homomorphism H_(d-1) (B;G)→H_(d-1) (E;G) induced by the natural inclusion map B→E, and such that the Hausdorff measure H^d (E∖B) is minimal under these constraints. Next we will show, in Chapter 4, that if E is a sliding almost minimal set of dimension 2, in a smooth domain Σ that looks locally like a half space, and with sliding boundary , and if in addition E⊃∂Σ, then, near every point of the boundary ∂Σ, E is locally biHölder equivalent to a sliding minimal cone (in a half space Ω, and with sliding boundary ∂Ω). In addition the only possible sliding minimal cones in this case are ∂Ω or the union of ∂Ω with a cone of type P_+ or Y_+.
4

Les clones minimaux de quasiprojections et les combinaisons

Lauzon, Maxime January 2006 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
5

Un résultat d'existence pour les ensembles minimaux par optimisation sur des grilles polyédrales

Feuvrier, Vincent 30 September 2008 (has links) (PDF)
Rappelons qu'une partie de Rn est dite minimale si sa mesure de Hausdorff d-dimensionnelle ne peut être rendue plus petite par déformation dans une classe de compétiteurs adaptée. On peut citer comme exemple le problème de Plateau standard, pouvant se réécrire comme celui de trouver un ensemble minimal pour les déformations à support relativement compact dans un domaine, la frontière du domaine jouant alors le rôle d'une condition topologique de bord. Un ensemble quasiminimal au sens d'Almgren n'est pas forcément minimal puisque sa mesure peut décroître après déformation, mais seulement de manière contrôlée relativement à la mesure des points qui ont été déformés. Par exemple le graphe d'une application lipschitzienne de Rd dans Rn-d est quasiminimal et de façon générale, on sait (voir [A]) que les ensembles quasiminimaux sont rectifiables. Lorsqu'on considère la réduction E* d'un ensemble quasiminimal E, qui consiste à prendre le support de la mesure de Hausdorff k-dimensionnelle restreinte à E — en gros en enlevant les points dont la contribution à la mesure de E est nulle — on sait en outre (voir [DS]) que E* contient de grandes images lipschistziennes et est uniformément rectifiable. Une autre propriété remarquable concerne les limites de Hausdorff de suites d'ensembles quasiminimaux réduits. Dans ce contexte, non seulement la limite est quasiminimale et réduite, mais en outre la mesure de Hausdorff est semi-continue inférieurement (voir par exemple [D1]), ce qui n'est généralement pas le cas. Cette propriété fait des limites de suites minimisantes d'ensembles quasiminimaux les candidates idéales à la résolution de problèmes d'existence sous contrainte topologique stable par déformation. On propose ici, dans le cadre d'un problème sur un ouvert en dimension et codimension quelconques, un premier résultat d'existence utilisant une méthode systématique pour construire une suite minimisante d'ensembles quasiminimaux, par minimisation finie sur les sous-faces d-dimensionnelles de grilles polyédrales adaptées. La construction de telles grilles est assez délicate, puisqu'on s'impose à la fois de faire l'approximation polyédrale d'un ensemble rectifiable le long de certains plans tangents pour contrôler l'augmentation de mesure correspondante, tout en gardant un contrôle uniforme sur la régularité des polyèdres de façon à éviter qu'ils ne soient trop plats. Des bornes uniformes sur la forme des polyèdres sont en effet utilisées lors de la discrétisation polyédrale des compétiteurs du problème — mettant en jeu des projections radiales successives sur la frontière des sous-faces de dimension décroissante de n à d — et permettent d'obtenir automatiquement une constante de quasiminimalité ne dépendant que de n et d. La suite d'ensembles quasiminimaux obtenue converge alors en distance de Hausdorff sur tout compact du domaine vers un ensemble minimal — ou presque-minimal dans le cas d'une fonctionnelle Jd h(E) = R hdHd avec une fonction h continue à valeurs dans [1,M]. L'existence de rétractions lipschitziennes sur la limite obtenue (donnée par le théorème de Jean Taylor dans [T] pour le cas d = 2, n = 3) devrait alors permettre d'affirmer que la limite fait encore partie de la classe topologique initiale considérée. Le résultat d'existence pourrait encore se généraliser à certains problèmes sur des variétés sans bord, ou dans une certaine mesure à des domaines fermés pour lesquels on connait une rétraction lipschitzienne d'un voisinage sur le bord.
6

Modèles, primitives et méthodes de suivi pour la segmentation vasculaire. Application aux coronaires en imagerie tomodensitométrique 3D.

Lesage, David 15 October 2009 (has links) (PDF)
La segmentation des structures vasculaires dans les images médicales est une étape complexe mais fondamentale pour l'aide au diagnostic et au traitement. Dans ce contexte, les techniques de traitement d'images facilitent la tâche des experts médicaux en minimisant les interactions manuelles tout en réduisant la variabilité inter-opérateurs. Nous présentons tout d'abord un état de l'art des méthodes de segmentation vasculaire 3D organisé suivant trois axes: modèles géométriques et d'apparence, primitives extraites des images et schémas d'extraction. Nos travaux se focalisent sur une problématique particulièrement complexe, la segmentation des artères coronaires en imagerie tomodensitométrique 3D. Nous proposons un modèle géométrique axial, évalué dans l'image grâce à une primitive fondée sur le flux de gradient à fort pouvoir discriminant et faible coût calculatoire. Nous dérivons ensuite un modèle bayésien récursif appris de façon non paramétrique sur une base de segmentations manuelles. Nous proposons enfin deux schémas d'extraction. Le premier met en œuvre une procédure d'optimisation discrète sur graphe fondée sur la propagation de chemins minimaux 4D (position spatiale 3D de l'axe vasculaire plus rayon associé). Il exploite une nouvelle métrique cumulative dérivée de notre modèle bayésien. Notre deuxième schéma repose sur une approche de suivi stochastique par méthode de Monte-Carlo séquentielle estimant la distribution a posteriori de notre modèle bayésien. Une attention particulière est donnée à la robustesse et l'efficacité calculatoire de nos algorithmes. Ceux-ci sont évalués qualitativement et quantitativement sur une base de données cliniques de grande taille.
7

Extraction et usages de motifs minimaux en fouille de données, contribution au domaine des hypergraphes

Hébert, Céline 11 September 2007 (has links) (PDF)
La découverte et l'interprétation de motifs et de règles sont deux tâches centrales en extraction de connaissances dans les bases de données. Cette thèse traite de l'extraction et des usages de motifs minimaux à la fois en fouille de données et dans le domaine des hypergraphes. D'une part, nous proposons une méthode efficace pour la découverte de motifs delta-libres dans les données larges, malgré les difficultés algorithmiques inhérentes à ce type de données. Cette méthode repose sur l'utilisation de l'extension des motifs et d'un nouveau critère d'élagage. D'autre part, nous nous intéressons à la qualité des règles d'associations et nous présentons un cadre générique qui permet de mieux comprendre les similarités et différences entre mesures. Il montre que de nombreuses mesures (appelées SBMs pour Simultaneously Bounded Measures) ont des comportements proches. Ce résultat permet de garantir des valeurs minimales pour toutes les SBMs et la production de règles de qualité par rapport à l'ensemble de ces mesures. Enfin, l'apport des méthodes de type <> pour d'autres domaines est mis en évidence. Nous montrons que notre approche de découverte de motifs dans les données larges est exploitable pour calculer efficacement les traverses minimales d'un hypergraphe, un problème réputé comme particulièrement difficile. Différentes applications, notamment en biologie, montrent l'intérêt pratique de nos méthodes.
8

Résultats de régularité et d'existence pour des ensembles minimaux ; Problème de Plateau / Existence and regularity results for minimal sets ; Plateau problem

Cavallotto, Edoardo 25 June 2018 (has links)
Résoudre le Problème de Plateau signifie trouver la surface ayant l’aire minimale parmi toutes les surfaces avec un bord donné.Une partie du problème réside dans le fait de donner des définitions appropriées aux concepts de “surface”, “aire” et “bord”. Dans notre contexte les objets considérés sont ensembles dont la mesure de Hausdorff est localement finie. La condition de bord glissant est donnée par rapport à une famille à un paramètre de déformations compactes laquelle permet au bord de glisser le long d'un ensemble fermé. La fonctionnelle à minimiser est liée aux problèmes de capillarité et de frontière libre.On s'est intéressé aux cônes minimaux glissants, c'est à dire les cônes tangents aux surfaces minimaux glissantes dans des points sur son bord. En particulier on a étudié les cônes contenus dans un demi-espace dont le bord peut glisser le long l'hyperplane bornant le demi-espace. Après avoir donné une classification des cônes minimaux de dimension un dans le demi-plan on a présenté quatre nouveau cône minimaux de dimension deux dans le demi-espace (lesquels ne peuvent pas être obtenus comme un produit cartésien d'un des cône précédents avec la droite réelle). La technique utilisé c'est les calibrations couplées, qui dans un cas on a pu généraliser en grands dimensions.Afin de montrer que la liste des cônes minimaux est complète on a entamé la classification des cônes qui satisfont les conditions nécessaires pour la minimalité, pour lesquels on a obtenu des meilleurs compétiteurs à l'aide des simulations numériques. / Solving the Plateau problem means to find the surface with minimal area among all surfaces with a given boundary. Part of the problem actually consists of giving a suitable definition to the notions of “surface”, “area” and “boundary”. In our setting the considered objects are sets whose Hausdorff area is locally finite. The sliding boundary condition is given in term of a one parameter family of compact deformations which allows the boundary of the surface to moove along a closed set. The area functional is related to capillarity and free-boundary problems, and is a slight modification of the Hausdorff area.We focused on minimal boundary cones ; that is to say tangent cones on boundary points of sliding minimal surfaces. In particular we studied cones contained in an half-space and whose boundary can slide along the bounding hyperplane. After giving a classification of one-dimensional minimal cones in the half-plane we provided four new two-dimensional minimal cones in the three-dimensional half space (which cannot be obtained as the Cartesian product of the real line with one of the previous cones). We employed the technique of paired calibrations and in one case could also generalise it to higher dimension.In order to prove that the provided list of minimal cones is complete, we started the classification of cones satisfying the necessary conditions for the minimality, and with numeric simulations we obtained better competitors for these new candidates.
9

Les Invariants du n- cube

Mollard, Michel 12 November 1981 (has links) (PDF)
On étudie divers problèmes concernant le n-cube. On décrit les exemples connus de (0,2) graphes (bipartis de diamètre 2 ou 3). On présente des constructions de (0,2) graphes. On étudie les (0,2) graphes avec des triangles. On montre comment construire certains des (0,2) graphes comme graphes de Cayley de groupes. On étudie les invariants immédiats du n-cube.
10

SUR LA REGULARITE DES MINIMISEURS DE MUMFORD-SHAH EN DIMENSION 3 ET SUPERIEURE

Lemenant, Antoine 02 June 2008 (has links) (PDF)
On étudie dans cette thèse certains aspects de la régularité de l'ensemble singulier d'un minimiseur pour la fonctionnelle de Mumford-Shah. On se place principalement en dimension 3 même si certains résultats fonctionnent encore en dimension supérieure. Dans une première partie on étudie les minimiseurs globaux dans R^N et on montre que si (u;K) est un minimiseur global et que si K est un cône assez régulier, alors u (modulo les constantes) est une fonction homogène de degré 1/2 dans R^N\K. Ceci nous permet de lier l'existence d'un minimiseur global et le spectre du laplacien sphérique dans la sphère unité privée de K. Une conséquence est qu'un secteur angulaire stricte ne peut pas être l'ensemble singulier d'un minimiseur global de Mumford-Shah dans R^3. Dans la deuxième partie on montre un théorème de régularité au voisinage des cônes minimaux P, Y et T. On montre que si K est proche (en distance) d'un Y ou d'un T dans une certaine boule, alors K est l'image C^1,alpha d'un P, Y ou d'un T dans une boule légèrement plus petite, ce qui généralise un théorème de L. Ambrosio, N. Fusco et D. Pallara [AFP07]. Les techniques employées ne sont pas exclusives à la dimension 3 et devraient permettre de démontrer des résultats analogues en toute dimension pour un minimiseur de Mumford-Shah, dès lors qu'un résultat de régularité sur les ensembles presque minimaux existerait.

Page generated in 0.0408 seconds