Spelling suggestions: "subject:"misfit dislocation""
1 |
Plastic Relaxation of Highly Tensile Strained (100) Ge/InGaAs HeterostructuresGoley, Patrick Stephen 29 July 2015 (has links)
Biaxial tensile strain has been shown to greatly enhance the optoelectronic properties of epitaxial germanium (Ge) layers. As a result, tensile-Ge (and#949t-Ge) layers grown on larger lattice constant InGaAs or GeSn have attracted great research interest. However, no previous studies have investigated the plastic relaxation occurring in these and#949t-Ge layers. Here, we experimentally demonstrate that plastic relaxation occurs in nearly all and#949t-Ge epitaxial layers that are of practical interest for optoelectronic applications, even when layers may still exhibit strain-enhanced characteristics. We show arrays of misfit dislocations (MDs), which are mostly disassociated, form at the and#949t-Ge/InGaAs interface for and#949t-Ge layers as thin as 15 nm with less than 1% total mismatch. Wedge geometry of plain view transmission electron microscopy (PV-TEM) foils is utilized to carry out a depth dependent investigation MD spacing for a range of and#949t-Ge/InGaAs heterostructures. MD spacing measured by PV-TEM is correlated to and#949t-Ge layer relaxation measured by high-resolution x-ray diffraction. We confirm very low relaxation (< 10% relaxed) in and#949t-Ge layers does not imply they have been coherently grown. We demonstrate plastic relaxation in the and#949t-Ge layer is acutely sensitive to grown-in threading dislocations (TDs) in the template material, and that reducing TD density is critical for maximizing strain retention. Given that and#949t-Ge layer thicknesses of 150+ nm with greater than 1% tensile strain are desired for optoelectronic devices, this work suggests that MDs may inevitably be present at and#949t-Ge/InGaAs heterointerfaces in practical devices, and that the effect of MDs on optoelectronic performance must be better understood. / Master of Science
|
2 |
Atomic-scale Structural Characterizations of Functional Epitaxial Thin FilmsZhu, Yuanyuan 16 December 2013 (has links)
A precise understanding of the fundamental correlation between synthesis, microstructure and physical properties is of vital importance towards rational design of improved functional epitaxial thin films. With the presence of heterogeneous interface and associated inhomogeneous lattice strain, film microstructure becomes sensitive to subtle interfacial perturbations and hence may exhibit intriguing physical properties. Control of the epitaxial film functionality requires accurate knowledge of the actual film chemistry, interfacial defects and associated strain field.
This dissertation reports in-depth microstructural characterization of the intrinsic chemical inhomogeneity in selected epitaxial thin films including superconducting Fe1+yTe1-xSex/SrTiO3(STO) heterogeneous systems, the flux-pinning defects at both of conversional YBa2Cu3O7-δ (YBCO)/substrate lateral interfaces and vertical interfaces of YBCO&BaSnO3(BSO) nanocomposite films, and the misfit dislocation core configurations of STO/MgO and MgO/STO heterostructures pair, using the state-of-the-art aberration-corrected scanning transmission electron microscopy (CS-corrected STEM) in combination with geometric phase analysis (GPA).
For the first time, the local atomic arrangement of Te and Se as well as interstitial Fe(2) has been clearly revealed in superconducting Fe1+yTe1-xSex/STO epitaxial films. We found that the film growth atmosphere can greatly affect the film stoichiometry, the homogeneity of Se/Te ordering and thus the overall film superconductivity.
YBCO/substrate interface mismatch and YBCO&BSO vertical interface contact have been explored through substrate selection and doping-concentration variation. We observed a diverse nature of intrinsic defects in different YBCO/substrate heterosystems; thermal stable defects capable of maintaining individual strain field have been found effective in flux-pinning. Along the vertical heterointerface of YBCO/BSO, misfit dislocations were found throughout the film thickness. It adds another dimension to the flux-pinning landscape design.
Four basic misfit dislocation core configurations of a STO/MgO heterosystem have been identified, and found strongly dependent on the actual interface disordering such as substrate atomic-height steps and interdiffussion. To precisely quantify the heterointerface lattice strain, we first conducted systematic investigations on the accuracy of STEM-based GPA. Follow our protocol, 1 pm accuracy has been proven in the STEM fast-scan direction with a spatial resolution less than 1 nm. The effectiveness and reliability of this optimized GPA strain profile were demonstrated in both applications of a relaxed STO/MgO and a partially strained LaAlO3/STO heterointerfaces, respectively.
|
3 |
Strain relaxation in InGaN/GaN herostructures / Relaxation des contraintes dans les hétérostuctures InGaN/GaNLi, Quantong 20 March 2018 (has links)
Dans ce travail, nous avons étudié la relaxation de couches d’hétérostructures InGaN/GaN obtenue par épitaxie en phase vapeur aux organométalliques (EPVOM) et épitaxie aux jets moléculaires (EJM) principalement par microscopie électronique en transmission (MET). Pour ce faire, nous avons fait varier la composition de l'indium de 4.1% au nitrure d'indium pur, ce qui correspond lors de la croissance sur GaN à un décalage paramétrique allant de 1% à 11.3%. Le travail a porté sur des couches dont l’épaisseur allait de 7 nm à 500 nm. A partir d’une composition en indium voisine de 10%, nous mettons en évidence la formation d’un réseau de dislocations vis dont la ligne se promène dans l’interface, avec de très longues sections droites le long des directions <11-20>. Ces dislocations coexistent avec un réseau de dislocations coins qui commence à se former vers 13%, il disparait complétement autour d’une composition en indium de 18%. Le réseau de dislocation vis se densifie de plus en plus au-delà. Outre ces dislocations de décalage paramétrique, d'autres mécanismes qui contribuent à la relaxation de la contrainte dans ces hétérostructures InGaN/GaN ont été mis en évidence. Ainsi, au-dessus d'une composition d'indium supérieure à 25%, de nombreux phénomènes se produisent simultanément. (1) Formation des dislocations de décalage paramétrique à l'hétérointerface; (2) une composition de la couche qui s’enrichit en indium vers la surface; (3) des fortes perturbations de la séquence hexagonale conduisant à un empilement aléatoire; (4) croissance à trois dimensions (3D) pouvant même conduire à des couches poreuses lorsque la composition en indium est comprise entre 40% et 85%. Cependant, on met en évidence qu’il est possible de faire croître de l’InN pur de bonne qualité cristalline s'améliore grâce à la formation systématique d'une couche 3D. / In this work, we have investigated the strain relaxation of InGaN layers grown on GaN templates by MOVPE and PAMBE using TEM. To this end we varied the indium composition from 4.1% to pure indium nitride and the corresponding mismatch was changing from less than 1% to 11.3%, the thickness of the InGaN layers was from 7 nm to 500 nm. When the indium composition is around 10%, one would expect mostly elastically strained layers with no misfit dislocations. However, we found that screw dislocations form systematically at the InGaN/GaN interface. Moreover, below 18% indium composition, screw and edge dislocations coexist, whereas starting at 18%, only edge dislocations were observed in these interfaces. Apart from the edge dislocations (misfit dislocations), other mechanisms have been pointed out for the strain relaxation. It is found that above an indium composition beyond 25%, many phenomena take place simultaneously. (1) Formation of the misfit dislocations at the heterointerface; (2) composition pulling with the surface layer being richer in indium in comparison to the interfacial layer; (3) disruption of the growth sequence through the formation of a random stacking sequence; (4) three dimentional (3D) growth which can even lead to porous layers when the indium composition is between 40% and 85%. However, pure InN is grown, the crystalline quality improves through a systematic formation of a 3D layer.
|
Page generated in 0.0862 seconds