• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Preliminary investigation of thermostable DNA polymerases to reduce PCR amplification artifacts

Chen, Emily 13 June 2020 (has links)
Forensic genotyping uses a multiplex short tandem repeat (STR) assay to amplify deoxyribonucleic acid (DNA) samples. One of the artifacts mostly commonly encountered in forensic DNA analysis is stutter, which are non-specific products from the polymerase chain reaction (PCR) that are typically one repeat unit shorter in length than the allelic amplicon. While stutter peaks are typically no taller than 10% of the parent peak on electropherograms, their peak heights can fall into similar ranges as minor contributor alleles in mixtures, creating a problem of how to distinguish artifacts from true allele peaks in these situations. One way to potentially address this issue is to find a PCR method that produces a much lower amount of stutter than the method currently used, which involves amplifying samples with commercial PCR kits designed for forensic applications. These kits all use some form of Taq DNA polymerase (derived from Thermus aquaticus). In an effort to examine whether the type of enzyme used in an assay affects the resulting stutter rates observed, the existing GlobalFiler™ PCR Amplification Kit (Applied Biosystems) protocol for forensic multiplex STR assays was modified to test different types of enzymes. This was done by amplifying the same DNA sample with GlobalFiler primers and different commercial proofreading enzymes and their accompanying reaction buffer using manufacturer-recommended PCR parameters. The DNA sample originated from a buccal swab that was extracted on the EZ1® Advanced (Qiagen). The DNA solution was quantified using the Quantifiler™ Duo DNA Quantification Kit (Applied Biosystems) on the 7500 Real-Time PCR System (Applied Biosystems). In order to first establish the validity of switching out enzymes in an established protocol, a DNA sample was amplified with the Type-it® Microsatellite Kit (Qiagen), another Taq-based kit that is also marketed for use in multiplex STR assays. After a complete profile was successfully generated, research proceeded with testing various high-fidelity DNA polymerases. Some of the enzymes tested were known to be Pyrococcus-like while others were fused to a DNA-binding domain to enhance processivity. Taq polymerases tend to produce products with 3’adenine-overhangs while proofreading enzymes produce blunt-ends. This change caused a one base pair difference in the resulting amplicon lengths, which was accommodated by manually assigning genotypes after results from fragment analysis by capillary electrophoresis using a 3130 Genetic Analyzer (Applied Biosystems) were interpreted by the GeneMapper™ software (Applied Biosystems). Additional amplification kits tested were: the UCP HiFidelity PCR Kit (Qiagen), Phusion™ Hot Start II High-Fidelity DNA Polymerase (Thermo Scientific), Platinum™ SuperFi™ II DNA Polymerase (Invitrogen), iProof™ High-Fidelity DNA Polymerase (Bio-Rad), Q5® High-Fidelity DNA Polymerase (New England Biolabs), and TruFi™ DNA Polymerase (Azura Genomics). Most of the kits produced profiles exhibiting a high degree of uneven amplification and varying levels of allelic dropout. In addition, all of the kits tested had much shorter peak heights compared to using GlobalFiler. Changing the type of enzyme used in an established protocol was found to be less straightforward than anticipated. Due to the poor quality results obtained in the first pass of trials, a few kits were selected to undergo optimization in the hopes of achieving higher quality results from which further analyses, such as comparing stutter rates, could be more reliably conducted. Both altered reagent amounts (higher enzyme concentration, higher DNA input mass) and different PCR parameters (decreased denaturation temperature, varying annealing temperature, decreased extension temperature, longer extension cycles, and longer final extension stage) were assessed. Only an increase in extension cycling time was found to produce better peak heights while maintaining balanced amplification of most of the targeted loci. Initial samples amplified with the Phusion enzyme exhibited multiple non-specific artifacts that were not stutter. Raising the annealing temperature for that enzyme’s protocol eliminated this issue. Therefore, higher annealing temperatures were pre-emptively used for several of the other enzymes tested. One of the explanations proposed for the uneven amplification observed is the presence of inhibitors in the commercial buffers used affecting downstream capillary electrophoresis. The Q5 High-Fidelity and TruFi DNA polymerases produced the best quality profiles; the UCP HiFidelity PCR Kit had the poorest results. Preliminary results indicated that none of the protocol alterations implemented significantly decreased stutter rates, nor was any one commercial enzyme found to have consistently lower stutter rates than the GlobalFiler kit. Due to the low number of trials carried out, the findings from this study require more replications with a wider variety of DNA polymerases to confirm that the type of enzyme used in an assay does not affect stutter rates.
2

Safety analysis of TCR gene-modified T cells

Reuß, Simone 10 April 2012 (has links)
T-Zellrezeptor (TZR)-Gentherapie zeigte erste Erfolge in klinischen Studien, jedoch wurden gleichzeitig Risikofaktoren deutlich. Ein Risikofaktor ist das falsche Paaren der transferierten TZR-Ketten mit den endogenen, was zu TZR-Molekülen von unbekannter Spezifität führt und die Oberflächenexpression und somit auch die Funktionalität des transgenen TZR reduziert. Dieser Aspekt wurde in generierten T-Zellklonen mit einer konstitutiven/endogenen TZR-Expression sowie einer zweiten induzierbaren/transgenen TZR-Expression untersucht. Es konnte gezeigt werden, dass nach Induktion der transgenen TZR-Expression der endogene TZR seine Funktionalität verlor, obwohl er noch auf der Oberfläche detektierbar war. Als Ursachen wurden neben einer reduzierten Oberflächenexpression des endogenen TZR auch falsch gepaarte TZR-Moleküle, die mit Hilfe der Fluoreszenz-Resonanz-Energie-Transfer-Methode detektiert wurden, gefunden. Die Modifikation des TZR durch den Einbau einer zweiten Cystein-Brücke, was das Paaren der korrespondierenden TZR-Ketten stabilisieren soll, führte in den T-Zellklonen zu keiner Reduktion der falsch-paarenden TZR-Moleküle. In primären Wildtyp-T-Zellen verbesserte sich das richtige Paaren des transgenen TZR leicht und konnte durch Codon-Optimierung der TZR-Gene weiter verbessert werden. Der zweite untersuchte Risikofaktor ist die Insertionsmutagenese durch den retroviralen Vektor. Die sichere Verwendbarkeit von differenzierten T-Zellen für die TZR-Gentherapie wurde in einem Tiermodel mit wiederholter T-Zellstimulierung, um weitere Mutationen während der Zellteilung zu provozieren, analysiert. Im Laufe der Zeit reicherten sich die transferierten T-Zellen in den Tieren dramatisch an, aber entwickelten sich nicht zu T-Zelllymphomen. Die Proliferationskapazität und die Funktionalität der transferierten T-Zellen wurden bestätigt. Die Polyklonalität der TZR-gen-modifizierten T-Zellen wurde mit Hilfe der linear-amplifizierten Polymerasekettenreaktion nachgewiesen. / T cell receptor (TCR) gene therapy is a new therapy for cancer which showed first clinical success but at the same time risk factors evolved. One risk factor is the mispairing of the TCR chains with the endogenous TCR chains which leads to TCRs with unknown specificities and to a reduced expression and functionality of the transferred TCR. This aspect was analyzed in dual TCR T cell clones which had one constitutive/endogenous TCR expression as well as a second inducible/transgenic TCR expression. It could be shown that the endogenous TCR lost its functionality after induction of the transgenic TCR expression although it was still detectable on the cell surface. The reason was found in the lower surface expression level of the endogenous TCR as well as in mispaired TCR dimers detected by fluorescence resonance energy transfer (FRET) technique. Modification of the TCR by insertion of a second cysteine bridge which should stabilize the pairing of the corresponding TCR chains did not reduce the TCR mispairing in the T cell clones. In primary wild-type cells, the pairing of the transgenic TCR improved slightly and could be further improved by codon-optimization of the TCR genes. The second analyzed possible side effect of TCR gene therapy is the insertional mutagenesis by the retroviral vector. The safety of differentiated T cells for TCR gene therapy was analyzed in an animal model with a repetitive T cell stimulation to provide the opportunity for mutations to occur during cell division. Over time, transferred T cells increased dramatically in the recipient mice, but did not lead to T cell lymphomas. The proliferative capacity and the functionality of transferred T cells were confirmed. The polyclonality of the TCR gene-modified T cells could be confirmed by linear amplification-mediated polymerase-chain reaction.
3

Genetic regulation of virulence factors contributing to colonization and pathogenesis of helicobacter pylori

Baker, Patrick Ericson 14 October 2003 (has links)
No description available.

Page generated in 0.0761 seconds