• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • 5
  • 3
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 31
  • 31
  • 31
  • 18
  • 10
  • 8
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Metaboloptics: In Vivo Optical Imaging to Enable Simultaneous Measurement of Glucose Uptake, Mitochondrial Membrane Potential, and Vascular Features in Cancer

Martinez, Amy Frees January 2016 (has links)
<p>Altered metabolism is a hallmark of almost all cancers. A tumor’s metabolic phenotype can drastically change its ability to proliferate and to survive stressors such as hypoxia or therapy. Metabolism can be used as a diagnostic marker, by differentiating neoplastic and normal tissue, and as a prognostic marker, by providing information about tumor metastatic potential. Metabolism can further be used to guide treatment selection and monitoring, as cancer treatments can influence metabolism directly by targeting a specific metabolic dysfunction or indirectly by altering upstream signaling pathways. Repeated measurement of metabolic changes during the course of treatment can therefore indicate a tumor’s response or resistance. Recently, well-supported theories indicate that the ability to modulate metabolic phenotype underpins some cancer cells’ ability to remain dormant for decades and recur with an aggressive phenotype. It follows that accurate identification and repeated monitoring of a tumor’s metabolic phenotype can bolster understanding and prediction of a tumor’s behavior from diagnosis, through treatment, and (sadly) sometimes back again.</p><p>The two primary axes of metabolism are glycolysis and mitochondrial metabolism (OXPHOS), and alteration of either can promote unwanted outcomes in cancer. In particular, increased glucose uptake independent of oxygenation is a well-known mark of aggressive cancers that are more likely to metastasize and evade certain therapies. Lately, mitochondria are also gaining recognition as key contributors in tumor metabolism, and mitochondrial metabolism has been shown to promote metastasis in a variety of cell types. Most tumor types rely on a combination of both aerobic glycolysis and mitochondrial metabolism, but the two axes’ relative contributions to ATP production can vary wildly. Knowledge of both glycolytic and mitochondrial endpoints is required for actionable, systems-level understanding of tumor metabolic preference. </p><p>Several technologies exist that can measure endpoints informing on glycolytic and/or mitochondrial metabolism. However, these technologies suffer from a combination of prohibitive cost, low resolution, and lack of repeatability due to destructive sample treatments.</p><p>There is a critical need to bridge the gap in pre-clinical studies between single-endpoint whole body imaging and destructive ex vivo assays that provide multiple metabolic properties, neither of which can provide adequate spatiotemporal information for repeated tumor monitoring. Optical technologies are well-suited to non-destructive, high resolution imaging of tumor metabolism. A carefully chosen set of endpoints can be measured across a variety of length scales and resolutions to obtain a complete picture of a tumor’s metabolic state. First, the fluorescent glucose analog 2-(N-(7-Nitrobenz-2-oxa-1,3-diazol-4-yl)Amino)-2-Deoxyglucose (2-NBDG) can be used to report on glucose uptake. The fluorophore tetramethylrhodamine, ethyl ester (TMRE) reports on mitochondrial membrane potential, which provides information regarding capacity for oxidative phosphorylation. Vascular oxygenation (SO2) and morphological features, which are critical for interpretation of 2-NBDG and TMRE uptake, can be obtained using only endogenous contrast from hemoglobin. </p><p>Three specific aims were proposed toward the ultimate goal of developing an optical imaging toolbox that utilizes exogenous fluorescence and endogenous absorption contrast to characterize cancer metabolic phenotype in vivo. </p><p>In Aim 1, we optimized the fluorescent glucose analog 2-(N-(7-Nitrobenz-2-oxa-1,3-diazol-4-yl)Amino)-2-Deoxyglucose (2-NBDG) to report on glycolytic demand in vivo. Our primary goal was to demonstrate that correcting 2-NBDG uptake (NBDG60) by the rate of delivery (RD) showed improved contrast between distinct tumor phenotypes. We showed that the ratio 2-NBDG60/RD served as a delivery-corrected measure of glucose uptake in the dorsal skin flap window chamber models containing normal tissues and tumors. Delivery correction was able to minimize the effects of a large change in the injected 2-NBDG dose. Further, the endpoint showed a significant inverse correlation with blood glucose levels. Since glucose has been shown to competitively inhibit 2-NBDG transport into cells, this finding indicating that we were indeed reporting on glucose uptake. Importantly, the ratio was able to distinguish specific uptake of 2-NBDG from accumulation of a fluorescent control, 2-NBDLG, which is identical to 2-NBDG in molecular weight and fluorescent spectrum, but is unable to undergo active transport into the cell. </p><p>The ratio 2-NBDG60/RD was then leveraged to compare different tumor phenotypes and to characterize the dependence of glucose uptake on vascular oxygenation within these tumors. Our results showed that 2-NBDG60/RD was an effective endpoint for comparing in vivo glucose uptake of metastatic 4T1 and nonmetastatic 4T07 murine mammary adenocarcinomas. Further, the addition of vascular information revealed metabolic heterogeneity within the tumors. The primary conclusion of Aim 1 was that delivery-corrected 2-NBDG uptake (2-NBDG60/RD) is an appropriate indicator of glucose demand in both normal and tumor tissues.</p><p>In Aim 2, we optimized fluorescent tetramethyl rhodamine, ethyl ester (TMRE) for measurement of mitochondrial membrane potential (MMP). We then leveraged the relationships between MMP, glucose uptake, and vascular endpoints to characterize the in vivo metabolic landscapes of three distinct and extensively studied murine breast cancer lines: metastatic 4T1 and non-metastatic 67NR and 4T07. </p><p>Using two-photon microscopy, we confirmed that TMRE localizes to mitochondrial-sized features in the window chamber when delivered via tail vein. The kinetics of TMRE uptake were robust across both normal and tumor tissues, with a stable temporal window for measurement from 40-75 minutes after injection. We saw that TMRE uptake decreased as expected in response to hypoxia in non-tumor tissue, and in response to chemical inhibition with a mitochondrial uncoupler in both non-tumor and 4T1 tissue. MMP was increased in all tumor types relative to non-tumor (p<0.05), giving further confirmation that TMRE was reporting on mitochondrial activity.</p><p>We leveraged the relationships between the now-optimized endpoints of MMP (Aim 2), glucose uptake (Aim 1) and vascular endpoints (Aims 1 and 2) to characterize the in vivo metabolic landscapes of three distinct and extensively studied murine breast cancer lines: metastatic 4T1 and non-metastatic 67NR and 4T07. Imaging the combination of endpoints revealed a classic “Warburg effect” coupled with hyperpolarized mitochondria in 4T1; 4T1 maintained vastly increased glucose uptake and comparable MMP relative to 4T07 or 67NR across all SO2. We also showed that imaging trends were concordant with independent metabolomics analysis, though the lack of spatial and vascular data from metabolomics obscured a more detailed comparison of the technologies.</p><p>We observed that vascular features in tumor peritumoral areas (PA) were equally or more aberrant than vessels in the tumor regions that they neighbored. This prompted consideration of the metabolic phenotype of the PA. Regional metabolic cooperation between the tumor region and the PA was seen only in 4T1, where MMP was greater in 4T1 tumors and glucose uptake was greater in 4T1 PAs. </p><p>Because of their regional metabolic coupling as well as their demonstrated capacity for glycolysis and mitochondrial activity, we hypothesized that the 4T1 tumors would have an increased ability to maintain robust MMP during hypoxia. 67NR and 4T07 tumors showed expected shifts toward decreased MMP and increased glucose uptake during hypoxia, similar to the trends we observed in normal tissue. Surprisingly, 4T1 tumors appeared to increase mitochondrial metabolism during hypoxia, since MMP increased and SO2 dramatically decreased. Overall, this aim demonstrated two key findings: 1. TMRE is a suitable marker of mitochondrial membrane potential in vivo in normal tissue and tumors, and 2. imaging of multiple metabolic and vascular endpoints is crucial for the appropriate interpretation of a metabolic behavior. </p><p>Finally, in Aim 3 we evaluated the feasibility of combined 2-NBDG and TMRE imaging. The primary objective was to enable simultaneous imaging of the two fluorophores by minimizing sources of “cross-talk”: chemical reaction, optical overlap, and confounding biological effects. A secondary objective was to transition our imaging method to a new platform, a reflectance-mode, high-resolution fluorescence imaging system built in our lab, which would expand the use of our technique beyond the dorsal window chamber model. We first used liquid chromatography- mass spectrometry to confirm that the chemical properties of the two fluorophores were compatible for simultaneous use, and indeed saw that the mixing of equimolar 2-NBDG and TMRE did not form any new chemical species. </p><p>We also performed a phantom study on the hyperspectral imaging system, used for all animal imaging in Aim 1 and Aim 2, to estimate the range of 2-NBDG and TMRE concentrations that are seen at the tissue level in normal and tumor window chambers. We created a new phantom set that spanned the range of estimated in vivo concentrations, and imaged them with the reflectance-mode fluorescence imaging system. The phantom experiments gave us two important findings. First, we saw that fluorescence intensity increased linearly with fluorophore concentration, allowing for accurate quantification of concentration changes between samples. Most importantly, we found that we could exploit the optical properties of the fluorophores and our system’s spectral detection capability to excite the two fluorophores independently. Specifically, we could excite 2-NBDG with a 488nm laser without detectable emission from TMRE, and could excite TMRE with a 555nm laser without detectable emission from 2-NBDG. With this characterization, the optical properties of the two fluorophores were considered compatible for simultaneous imaging. </p><p>Next, we sought to determine whether biological or delivery interactions would affect uptake of the two fluorophores. Surprisingly, both in vitro and in vivo imaging suggested that simultaneous dosing of the 2-NBDG and TMRE caused significant changes in uptake of both probes. Since we previously found that TMRE equilibrates rapidly at the tissue site, we hypothesized that staggering the injections to allow delivery of TMRE to tissue before injecting 2-NBDG would restore the full uptake of both fluorophores. Two sequential injection protocols were used: in the first group, TMRE was injected first followed by injection of 2-NBDG after only 1-5 minutes, and in the second group, TMRE was injected first followed by injection of 2-NBDG after 10-15 minutes. Both sequential injection strategies were sufficient to restore the final fluorescence of both fluorophores to that seen in the separate TMRE or 2-NBDG imaging cohorts; however, the shorter time delay caused changes to the initial delivery kinetics of 2-NBDG. We concluded that sequential imaging of TMRE followed by 2-NBDG with a 10-15 minute delay was therefore the optimal imaging strategy to enable simultaneous quantification of glucose uptake and mitochondrial membrane potential in vivo. </p><p>Applying the sequential imaging protocol to 4T1 tumors demonstrated a highly glycolytic phenotype compared to the normal animals, as we had seen in Aim 2. However, mitochondrial membrane potential was comparable for the normal and tumor groups. The next study will test an extended delay between the injections to allow more time for TMRE delivery to tumors prior to 2-NBDG injection. Overall, the key finding of Aim 3 was that a carefully chosen delivery strategy for 2-NBDG and TMRE enabled simultaneous imaging of the two endpoints, since chemical and optical cross-talk were negligible.</p><p>The work presented here indicates that an optical toolbox of 2-NBDG, TMRE, and vascular endpoints is well poised to reveal interesting and distinct metabolic phenomena in normal tissue and tumors. Future work will focus on the integration of optical spectroscopy with the microscopy toolbox presented here, to enable long-term studies of the unknown metabolic changes underlying a tumor’s response to therapy, its escape into dormancy, and ultimately, its recurrence.</p> / Dissertation
2

Effects of glutamine deprivation on oxidative stress and cell survival in breast cell lines

Gwangwa, Mokgadi Violet January 2019 (has links)
Tumourigenic cells utilize aberrant metabolic process that supports the biosynthetic requirements for hyperproliferation, survival and prolonged maintenance characterised by glucose metabolism to lactate dehydrogenase independent of oxygen availability (Warburg effect). In addition, tumourigenic cells exert increased glycolytic- and glutaminolytic activity in order to provide increased quantities of adenosine triphosphate. The aim of this research project was to investigate the influence of glutamine deprivation on proliferation, morphology, oxidative stress, mitochondrial membrane potential, cell cycle progression, antioxidant defences, deoxyribonucleic acid (DNA) damage, energy status, cell survival signaling and cell death induction in tumourigenic- and non-tumourigenic breast cell lines. In this study it was found that glutamine deprivation results in differential antiproliferative activity where the MCF-7 cell line was the most affected with decreased cell growth to 61% after 96 h of glutamine deprivation. Aberrant redox activity was most prominently observed in the MCF-7 cell line accompanied with biphasic mitochondrial membrane potential- and reactive oxygen species production. The MCF-7 cell line showed significant mitochondrial membrane depolarisation after 24 h and 96 h deprivation from glutamine (1.5- and 1.37 fold). Cell cycle progression analysis illustrated an increase in the amount of cells present in the S-phase in the MCF-7 cell line after 72 h of glutamine deprivation. The MDA-MB-231 cell line resulted in a significant increase in cells occupying the G2/M phase after 24 h of glutamine deprivation. Glutamine deprivation in the BT-20 cell line resulted in a significant increase in cells occupying G1 phase after 72 h of glutamine deprivation. The MCF-7 cell line demonstrated the least amount of viable cells when analysing apoptosis induction, when compared to the MDA-MB-231-, MCF-10A- and BT-20 cell lines after glutamine deprivation suggesting that the MCF-7 cell line is the most affected cell line. Analysis of antioxidant mechanism via superoxide dismutase (SOD) inhibition illustrated increased SOD activity in the MCF-7 cell line (9.1%) after 72 h of glutamine deprivation. Evaluation of catalase protein concentration indicated that the MCF-7 catalase expression increased to 1.28 fold after 24 h of glutamine deprivation when compared to cell propagated in complete growth medium. DNA damage was demonstrated by visualising the presence of fluorescent 8-hydroxydeoxyguanosine and showed that the MCF-7 cell line presented with significant 8-hydroxydeoxyguanosine staining. Survival signaling was also evaluated through visualising extracellular signal-regulated kinase (ERK) and phosphoinositide 3-kinase (PI3K) signaling which demonstrated increased ERK activation in the non-tumourigenic MCF-10A cell line and decreased PI3K activation. This study provides evidence that there are differential- and time-dependent responses in breast tumourigenic cells versus non-tumourigenic cells, to glutamine deprivation thus unraveling the crosstalk between glutamine deprivation, oxidative stress and cell death and different cell types will enable us to better understand the basics of tumour cell metabolism and thus develop therapeutics that provide promising pre-sensitization potential for chemotherapeutic agents. / Dissertation (MSc)--University of Pretoria, 2020. / Physiology / MSc / Unrestricted
3

Investigating alternative sperm preservation methods for assisted reproductive technologies

Slabbert, Marisa January 2013 (has links)
Introduction: Cryopreservation of human sperm is considered a routine practice in assisted reproduction laboratories. Semen samples are mainly cryopreserved as a back-up for procedures, donor sperm, and validation of samples from human immunodeficiency virus-positive patients. Human immunodeficiency virus semen samples generally result in a low yield of purified spermatozoa after decontamination. These samples need to be cryopreserved for later use. Unlike conventional cryopreservation, vitrification does not use harmful cryoprotectants, thereby potentially reducing sperm damage. Vitrification is not yet common practice for sperm cryopreservation in assisted reproduction. The aim of this study was to establish the feasibility of utilising vitrification as an alternative to current conventional cryopreservation of spermatozoa. Methods: Semen samples were collected from human immunodeficiency virus-negative patients seeking diagnostic assistance from the unit. All samples were processed according to the unit’s standard protocol. For Study 1A (n=10) washed samples were divided and cryopreserved using three different cryopreservation media, and two different freezing protocols. In Study 1B (n=15), washed samples were divided and preserved using cryoprotectant-free vitrification in 100 μl, 300 μl and 500 μl volumes. For Study 2 (n=35) washed samples were split and cryopreserved using cryoprotectant-free vitrification (utilizing the volume that resulted in the highest quality spermatozoa in Study 1B) and conventional slow freezing (using the medium and protocol that resulted in superior quality spermatozoa in Study 1A). Post thawing, motility and kinetic parameters (Studies 1 and 2), viability (Study 1), mitochondrial membrane potential (Study 2), and DNA fragmentation (Study 2) of the two groups were compared. vi Results: Study 1A indicated that cryopreserving spermatozoa using Freezing Medium resulted in the highest quality spermatozoa with regards to motility and viability (p<0.05). Comparing the two preservation protocols, no conclusion could be reached on which protocol yielded superior results (p>0.05). The RBL freezing method is shorter, simpler and requires less equipment, and was therefore deemed the preferred method. Study 1B showed that the larger vitrification volumes (300 μl and 500 μl) yielded better spermatozoa in terms of motility and viability (p<0.05). No significant difference was observed with respect to the 300 μl and 500 μl vitrification volume groups. For practical reasons, 300 μl volumes will provide sufficient sperm for any procedure and, the intermediate volume ensures that more than one straw can be preserved. Study 2 found that cryoprotectant-free vitrification resulted in spermatozoa with significantly higher mitochondrial membrane potential and significantly lower apoptosis post thawing (p<0.05). Discussion: Conventional cryopreservation methods may compromise various sperm parameters and final yield. In this study, cryopreservation and cryoprotectant-free vitrification had equivalent outcomes with respect to sperm motility. However, the latter method yielded superior results in terms of ΔΨ and DNA sperm fragmentation. In conclusion, vitrification is an easy, rapid and more affordable technique that requires no special equipment. Using vitrification for purified sperm samples of patients could potentially result in a better post thaw quality for ART procedures. / Dissertation (MSc)--University of Pretoria, 2013. / gm2014 / Obstetrics and Gynaecology / unrestricted
4

Measurement of technetium-99m sestamibi signals in rats administered a mitochondrial uncoupler and in a rat model of heart failure / ミトコンドリア脱共役薬を投与されたラットおよび心不全ラットにおけるテクネチウムセスタミビ集積の測定

Kawamoto, Akira 25 May 2015 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(医学) / 甲第19175号 / 医博第4017号 / 新制||医||1010(附属図書館) / 32167 / 京都大学大学院医学研究科医学専攻 / (主査)教授 渡邊 直樹, 教授 松原 和夫, 教授 横出 正之 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
5

Acoplamento termodinâmico mitocondrial e resposta  a insulina em células do músculo esquelético / Mitochondrial thermodynamic coupling and insulin response in skeletal muscle cells

Sampaio, Ígor Hayaxibara 15 October 2015 (has links)
O quadro de resistência à insulina em humanos está fortemente relacionado ao acumulo de lipídeos intracelulares, a inatividade física e ao aumento de espécies reativas de oxigênio (ERO). O objetivo deste estudo foi verificar se o aumento na oferta de nutrientes incluindo glicose e ácido graxo palmítico pode alterar o potencial de membrana mitocondrial, a respiração, a produção de espécies reativas de oxigênio e a resposta a insulina em células do tecido muscular. Nossos resultados mostram que a exposição de células musculares a elevada disponibilidade de substratos resultou em diminuição do potencial de membrana mitocondrial, e aumento da respiração no estado IV e da expressão do RNAm da proteína desacopladora mitocondrial UCP-3. Mostrando a existência de um mecanismo de desacoplamento intrínseco em células do músculo esquelético ativado em situações de elevada oferta de nutrientes. Nessas condições observamos redução do acoplamento e da eficiência termodinâmica mitocondrial. Interessantemente, essa capacidade de desacoplamento parece ser perdida cronicamente como indicado pelos nossos resultados de consumo de oxigênio no período de 48h favorecendo uma menor atividade mitocondrial, aumento de EROs e redução da razão GSH/GSSG. Imagens de microscopia eletrônica em cultura primária e expressão gênica do PGC1-, um reconhecido gene regulador da biogênese mitocondrial, não demonstraram diferença entre controle e tratamento com palmitato. O ácido palmito resultou na redução da fosforilação de Akt, bem como, na captação de glicose estimulada por insulina. Nossos achados, portanto, sugerem que uma redução do acoplamento termodinâmico mitocondrial e do sistema antioxidante, juntamente com aumento do peróxido de hidrogênio, estão fortemente relacionados a redução da resposta a insulina. Deste modo, nosso estudo sugere um papel importante da mitocôndria na resposta a insulina. / The insulin resistance in human framework is strongly related to the accumulation of intracellular lipids, physical inactivity and increased reactive oxygen species (ROS). The aim of this study was to determine whether the increase in nutrient supply including glucose and palmitic fatty acid can change the mitochondrial membrane potential, respiration, production of reactive oxygen species and the insulin response in muscle tissue cells. Our results show that exposure of muscle cells to high availability of the substrate resulted in decreased mitochondrial membrane potential, in increased respiration in the state IV and mRNA expression of mitochondrial uncoupling protein UCP-3. Showing the existence of an intrinsic uncoupling mechanism of skeletal muscle cells activated in situations of high supply of nutrients. However, under these conditions we observed a reduction of the coupling and mitochondrial thermodynamic efficiency. Interestingly, this decoupling capacity was chronically lost as indicated by our results in the 48 hours period favoring a lower mitochondrial activity, increase of ROS and reduced GSH / GSSG ratio. Images from electron microscopy and gene expression of PGC1-, a recognized regulatory gene of mitochondrial biogenesis, showed no difference between control and treatment with palmitate. The palm acid resulted in reduced phosphorylation of Akt, as well as glucose uptake stimulated by insulin. Our findings thus suggest that a reduction in mitochondrial antioxidant and thermodynamic coupling system, along with increase in the hydrogen peroxide, are closely related to reducing insulin response. Thus, our findings suggest a role of mitochondria in insulin response.
6

Acoplamento termodinâmico mitocondrial e resposta  a insulina em células do músculo esquelético / Mitochondrial thermodynamic coupling and insulin response in skeletal muscle cells

Ígor Hayaxibara Sampaio 15 October 2015 (has links)
O quadro de resistência à insulina em humanos está fortemente relacionado ao acumulo de lipídeos intracelulares, a inatividade física e ao aumento de espécies reativas de oxigênio (ERO). O objetivo deste estudo foi verificar se o aumento na oferta de nutrientes incluindo glicose e ácido graxo palmítico pode alterar o potencial de membrana mitocondrial, a respiração, a produção de espécies reativas de oxigênio e a resposta a insulina em células do tecido muscular. Nossos resultados mostram que a exposição de células musculares a elevada disponibilidade de substratos resultou em diminuição do potencial de membrana mitocondrial, e aumento da respiração no estado IV e da expressão do RNAm da proteína desacopladora mitocondrial UCP-3. Mostrando a existência de um mecanismo de desacoplamento intrínseco em células do músculo esquelético ativado em situações de elevada oferta de nutrientes. Nessas condições observamos redução do acoplamento e da eficiência termodinâmica mitocondrial. Interessantemente, essa capacidade de desacoplamento parece ser perdida cronicamente como indicado pelos nossos resultados de consumo de oxigênio no período de 48h favorecendo uma menor atividade mitocondrial, aumento de EROs e redução da razão GSH/GSSG. Imagens de microscopia eletrônica em cultura primária e expressão gênica do PGC1-, um reconhecido gene regulador da biogênese mitocondrial, não demonstraram diferença entre controle e tratamento com palmitato. O ácido palmito resultou na redução da fosforilação de Akt, bem como, na captação de glicose estimulada por insulina. Nossos achados, portanto, sugerem que uma redução do acoplamento termodinâmico mitocondrial e do sistema antioxidante, juntamente com aumento do peróxido de hidrogênio, estão fortemente relacionados a redução da resposta a insulina. Deste modo, nosso estudo sugere um papel importante da mitocôndria na resposta a insulina. / The insulin resistance in human framework is strongly related to the accumulation of intracellular lipids, physical inactivity and increased reactive oxygen species (ROS). The aim of this study was to determine whether the increase in nutrient supply including glucose and palmitic fatty acid can change the mitochondrial membrane potential, respiration, production of reactive oxygen species and the insulin response in muscle tissue cells. Our results show that exposure of muscle cells to high availability of the substrate resulted in decreased mitochondrial membrane potential, in increased respiration in the state IV and mRNA expression of mitochondrial uncoupling protein UCP-3. Showing the existence of an intrinsic uncoupling mechanism of skeletal muscle cells activated in situations of high supply of nutrients. However, under these conditions we observed a reduction of the coupling and mitochondrial thermodynamic efficiency. Interestingly, this decoupling capacity was chronically lost as indicated by our results in the 48 hours period favoring a lower mitochondrial activity, increase of ROS and reduced GSH / GSSG ratio. Images from electron microscopy and gene expression of PGC1-, a recognized regulatory gene of mitochondrial biogenesis, showed no difference between control and treatment with palmitate. The palm acid resulted in reduced phosphorylation of Akt, as well as glucose uptake stimulated by insulin. Our findings thus suggest that a reduction in mitochondrial antioxidant and thermodynamic coupling system, along with increase in the hydrogen peroxide, are closely related to reducing insulin response. Thus, our findings suggest a role of mitochondria in insulin response.
7

<i>In vitro</i> Studies of β-cell Death and Survival. Modulation by Adenoviral Vectors and Bcl-2 Overexpression

Barbu, Andreea Roxana January 2004 (has links)
<p>Type 1 diabetes is a multifactorial disease resulting from the selective destruction of insulin-producing β-cells within the pancreatic islets of Langerhans. The mechanisms of β-cell death are not fully understood but cytokines are important mediators of this process. In the present study we found that the combination of IL-1β, TNF-α and IFN-γ induced a nitric oxide-dependent disruption of the mitochondrial membrane potential in rat insulin-producing RINm5F-cells, which seems to be a necessary event for both RINm5F-cell apoptosis and necrosis. The antiapoptotic protein Bcl-2 was able to prevent cellular death in RINm5F cells, most probably by counteracting the mitochondrial permeability transition. These results pointed out the potential of such antiapoptotic genes as gene therapy tools, to allow enhanced resistance against autoimmune destruction of β-cells in type 1 diabetes. For this purpose we used a progesterone-antagonist (RU 486)-inducible gene transfer system to achieve an efficient and controlled Bcl-2 overexpression in primary rat β-cells. However, in our experience, prolonged <i>in vitro</i> culture revealed adenoviral-induced islet cell necrosis, a process that was not prevented by Bcl-2 overexpression. Moreover, we observed that specific adenoviral genotypes correlate with differential induction of necrosis in both human and rat pancreatic islet cells. Although human islet cells showed an increased resistance in terms of viral concentrations required for the induction of cell-toxicity, our results showed that they were unable to build up an efficient antiviral response following infection and that their survival was dependent on the exogenous addition of α-interferon.</p><p>In conclusion, adenoviral techniques for overexpression of antiapoptotic proteins in insulin-producing cells may provide useful tools against β-cell directed autoimmune destruction. However, understanding the specific interactions of the viral gene products with cellular proteins and how they are involved in β-cell death regulation is fundamental for an efficient and safe application of gene therapy approaches to type 1 diabetes.</p>
8

In vitro Studies of β-cell Death and Survival. Modulation by Adenoviral Vectors and Bcl-2 Overexpression

Barbu, Andreea Roxana January 2004 (has links)
Type 1 diabetes is a multifactorial disease resulting from the selective destruction of insulin-producing β-cells within the pancreatic islets of Langerhans. The mechanisms of β-cell death are not fully understood but cytokines are important mediators of this process. In the present study we found that the combination of IL-1β, TNF-α and IFN-γ induced a nitric oxide-dependent disruption of the mitochondrial membrane potential in rat insulin-producing RINm5F-cells, which seems to be a necessary event for both RINm5F-cell apoptosis and necrosis. The antiapoptotic protein Bcl-2 was able to prevent cellular death in RINm5F cells, most probably by counteracting the mitochondrial permeability transition. These results pointed out the potential of such antiapoptotic genes as gene therapy tools, to allow enhanced resistance against autoimmune destruction of β-cells in type 1 diabetes. For this purpose we used a progesterone-antagonist (RU 486)-inducible gene transfer system to achieve an efficient and controlled Bcl-2 overexpression in primary rat β-cells. However, in our experience, prolonged in vitro culture revealed adenoviral-induced islet cell necrosis, a process that was not prevented by Bcl-2 overexpression. Moreover, we observed that specific adenoviral genotypes correlate with differential induction of necrosis in both human and rat pancreatic islet cells. Although human islet cells showed an increased resistance in terms of viral concentrations required for the induction of cell-toxicity, our results showed that they were unable to build up an efficient antiviral response following infection and that their survival was dependent on the exogenous addition of α-interferon. In conclusion, adenoviral techniques for overexpression of antiapoptotic proteins in insulin-producing cells may provide useful tools against β-cell directed autoimmune destruction. However, understanding the specific interactions of the viral gene products with cellular proteins and how they are involved in β-cell death regulation is fundamental for an efficient and safe application of gene therapy approaches to type 1 diabetes.
9

Toxicity and Cell Cycle Effects of Synthetic 8-Prenylnaringenin and Derivatives in Human Cells

Tokalov, Sergey V., Henker, Yvonne, Schwab, Pia, Metz, Peter, Gutzeit, Herwig O. 13 February 2014 (has links) (PDF)
The estrogenic flavanone rac-8-prenylnaringenin (8-PN) and 3 derivatives (rac-7-(O-prenyl)naringenin-4′-acetate (7-O-PN), rac-5-(O-prenyl)naringenin-4′,7-diacetate (5-O-PN), and rac-6-(1,1-dimethylallyl)naringenin (6-DMAN) were prepared by chemical synthesis and analyzed with respect to their toxicity and possible cell cycle effects in human acute myeloid leukemia (HL-60) cells. With the exception of 5-O-PN, all the other naringenins showed only weak toxic effects at concentrations below 50 μmol/l. A cell cycle analysis over several cell generations up to 4 days was carried out using the fluorescent dye carboxyfluorescein diacetate N-succinimidyl ester (CFSE) followed by propidium iodide (PI) staining at the end of the experiment. The well-studied flavonol quercetin was included in the analysis as a reference substance. All flavonoids affected cell proliferation, but the extent and the resulting changes in the proliferation pattern were specific for each substance. In contrast to the radical scavenging activity of quercetin, the tested flavanones showed no anti-oxidative properties using several different test systems. Similarly, the mitochondrial membrane potential (ΔΨm) was hardly effected by these compounds, while both menadione and quercetin strongly reduced the potential after 1 h of treatment. The reported chemical modification of interesting lead substances (like the strongly estrogenic 8-PN) presents a promising approach to modulate the properties of a relevant substance in a pharmacologically desirable way. The low toxicity and weak cytostatic properties of the tested naringenin derivatives is encouraging for further studies on known naringenin target molecules. / Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
10

Effect of cissampelos capensis rhizome extract on human sperm capacitation and acrosome reaction

Shalaweh, Salem January 2013 (has links)
>Magister Scientiae - MSc / Cissampelos capensis, is commonly known by the Afrikaans name ‟dawidjies” or ‟dawidjieswortel”. C. capensis is the most important and best known medicinal plant of the family Menispermaceae used by the Khoisan and other rural people in the western regions of South Africa. Among numerous other ailments, it is traditionally taken to treat male fertility problems. Yet, no studies have investigated the effects of this plant or its extracts on human spermatozoa. The aim of study was to investigate the effects of C. capensis rhizome extracts on sperm function.

Page generated in 0.5434 seconds