• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 605
  • 279
  • 144
  • 58
  • 31
  • 16
  • 10
  • 8
  • 8
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • Tagged with
  • 1397
  • 523
  • 236
  • 211
  • 164
  • 147
  • 122
  • 102
  • 101
  • 95
  • 94
  • 90
  • 89
  • 86
  • 84
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
291

Accumulation and Transmission Dynamics of a Naturally-Occurring mtDNA Deletion in <i>Caenorhabditis briggsae</i>

Sullins, Jennifer Anne 10 December 2018 (has links)
Maintaining mitochondrial genome sequence integrity is essential for preserving normal mitochondrial function. Several human diseases have been associated with heteroplasmic mitochondrial genome mutations, but few genetic systems can simultaneously represent pathogenic mitochondrial genome evolution and inheritance. The nematode Caenorhabditis briggsae is one such model. Natural C. briggsae isolates are globally-distributed and phylogenetically grouped into three distinct clades, with isolates exhibiting varying levels of a large-scale mtDNA deletion, nad5∆. Furthermore, a small subset of clade II isolates exhibits putative compensatory mutations that may reduce the risk of deletion formation and accumulation in those populations. In this thesis, the author characterizes the dynamics of nad5∆ heteroplasmy levels during both development and transmission in several C. briggsae natural isolates, including two containing putatively protective compensatory mutations (C+). For all isolates tested, nad5∆ heteroplasmy levels increased across nematode development, with L1 (first larval stage) exhibiting the lowest deletion load for all but one isolate that exhibited highly variable nad5∆ levels, while the increase was slowest and overall nad5∆ levels remained relatively low in C+ isolates. These results support previous work suggesting that nad5∆ is a selfish element and demonstrate the protective nature of compensatory mutations in inhibiting mtDNA deletion accumulation. In nad5∆ inheritance assays, C+ isolates displayed a strong pattern of reversion to wildtype mtDNA levels that was not seen in isolates lacking compensatory mutations (C-). These assays also showed that nad5∆ inheritance was not well predicted by total maternal nad5∆ proportion in either C+ or C- isolates; offspring nad5∆ levels were generally much lower than maternal levels, consistent with some form of negative selection operating between generations. Assays of both maternal somatic and gonadal tissues had slightly more power to predict offspring deletion levels than did assays of whole-worm maternal samples; this result likely points to variance in deletion levels originating from an untested parental tissue type present within the whole-worm samples. This thesis provided deeper insights into the patterns of mtDNA deletion transmission and age-associated dynamics. It was the first project of its type to survey mutation dynamics and heteroplasmy levels of a naturally-occurring large-scale mtDNA deletion. Thus, this work serves to further develop C. briggsae for use as an experimental model of human mtDNA deletion dynamics and mitochondrial dysfunction.
292

Phosphoregulation of DRP1 at the mitochondria in vivo regulates ischemic sensitivity in the brain and memory

Flippo, Kyle Harrington 01 May 2017 (has links)
Eukaryotic cells are unique in their ability to form complex multicellular organisms giving rise to distinct physiological systems. However, the ability for such complexity to evolve likely stems from an early event in which endosymbiosis of an aerobic prokaryote by a eukaryotic precursor gave rise to the eukaryotic organelle we now know as mitochondria. Mitochondria are colloquially known as the “power house” of the cell due to their ability to produce ATP through oxidative phosphorylation, but perform numerous other vital functions within the cell including sequestration of cytosolic Ca2+, production and sequestration of reactive oxygen species (ROS), and initiation of various forms of cell death. Mitochondria are especially important in neurons given their high demand for ATP and the importance of Ca2+ signaling in neuron excitability and development. Neurons are highly compartmentalized and plastic cells requiring the ability to control energy supply and Ca2+ signaling locally within given specialized structures such as dendritic spines or synaptic boutons. Therefore, mitochondria must be able to localize to particular sub-cellular locales and respond functionally to signaling occurring in that environment. Mitochondrial transport and function are heavily dependent upon the ability of mitochondria to undergo opposing and reversible fission and fusion events. Mitochondrial fission and fusion are themselves regulated by GTPase enzymes which physically catalyze constriction and fusion of the mitochondrial membranes. Mutations in mitochondrial fission and fusion enzymes specifically cause neurological disease in humans and recent work has illustrated the necessity of a proper balance of mitochondrial fission in neuron development, survival, and plasticity. Despite recognizing the importance of mitochondrial fission and fusion in neuron survival, development, and function we lack a concrete understanding of how changes in the equilibrium of fission and fusion impact these processes in vivo. In this thesis we investigate how promoting or inhibiting mitochondrial fission, through phosphoregulation of the mitochondrial fission enzyme Dynamin related protein 1 (Drp1) at mitochondria, impacts neuron survival and memory in vivo. We find that inhibiting phosphorylation of Drp1 at Serine 656 (S656) at the mitochondria, through deletion of a mitochondrial targeted A kinase anchoring protein (AKAP) known as AKAP1 in mice, increases cerebral infarct volume following transient occlusion of the mid-cerebral artery. Oppositely, promoting phosphorylation of Drp1-S656 at the mitochondria, through deletion of the PP2A regulatory subunit Bβ2 which localizes the PP2A heterotrimer to mitochondria, decreases cerebral infarct volume following occlusion of the mid-cerebral artery. Mechanistic in vitro studies in primary neurons reveal these effects are dependent upon the phosphorylation state of Drp1-S656 and likely due to altered mitochondrial respiratory capacity, ROS production, and Ca2+ homeostasis. Interestingly, we also observe improved hippocampal dependent memory in mice in which AKAP1 has been deleted which also appears dependent upon the phosphorylation state of Drp1-S656 and Ca2+ homeostasis. Ultimately, these findings provide insight into how phosphoregulation of Drp1 at the mitochondria alters neuron survival and function through shifting the mitochondrial fission/fusion equilibrium and consequently mitochondrial function.
293

Human disorder of energy transduction : molecular pathology

Malik, Safarina Golfiani, 1963- January 2001 (has links)
Abstract not available
294

Functional Approaches to the Development of Koala Sperm Cryopreservation Techniques

Yeng Zee Unknown Date (has links)
The primary objective of the studies described in this thesis was to improve the cryopreservation success of koala spermatozoa for the purpose of establishing a genome resource bank for this species. A defining feature of the studies in this thesis was the implementation of an organelle-specific approach to better understand the causes of koala sperm cryo-injury. The functional attributes of spermatozoa, such as mitochondrial function, plasma membrane fluidity, membrane lipid asymmetry and DNA integrity were assessed as an indication of cryo-injury. Sperm mitochondrial function and plasma membrane integrity were examined by cryomicroscopy using the fluorescent probes JC-1 and propidium iodide (PI) respectively in a dual staining technique. Cooling and re-warming koala spermatozoa were more detrimental to mitochondrial function than to plasma membrane integrity. Mitochondrial membrane potential (MMP) was suppressed by freezing and thawing treatments; after thawing, MMP declined significantly during rewarming (from 5ºC to 35ºC). The distribution of GM1 ganglioside was examined using fluorescent-labelled cholera toxin B. No significant redistribution of GM1 was observed after chilling or cryotreatment. The externalisation of phosphatidylserine (PS) was examined using fluorescent-labelled annexin V. There was no significant increase in translocation of PS after chilling or cryopreservation. These observations imply that cryotreatment had little effect on plasma membrane lipid asymmetry. Koala spermatozoa were incubated in a range of anisotonic media to investigate whether nuclear swelling was caused by osmotic flux during the cryopreservation process. Although the most hypotonic solution tested (64 mOsm/kg) induced the highest incidence of nuclear relaxation (mean ± SEM; 12 ± 3%), this was not as severe as that previously documented following cryopreservation. Chromatin relaxation is a phenomenon observed in koala spermatozoa, where the sperm nucleus expands due to the result of structural changes in the natural conformation of the sperm DNA/protamine complex. DNA fragmentation was not a primary cause of cryopreservation-induced sperm chromatin relaxation, although in situ nick translation of putative DNA breaks indicated that these increased as the sperm head became progressively more relaxed. Using a Sperm Chromatin Dispersion test (SCDt) specifically developed and validated for koala spermatozoa, a continuum of nuclear morphotypes was observed, ranging from no apparent DNA fragmentation to spermatozoa with highly dispersed and degraded chromatin. A double comet assay was also developed to investigate DNA fragmentation in the koala spermatozoa. Conducted under neutral followed by alkaline conditions, this assay was able to differentiate between single- (SSB) and double-stranded (DSB) DNA damage in an effort to refine the interpretation of DNA damage in mature koala spermatozoa; the majority of the koala spermatozoa had nuclei with DNA abasic-like residues. The ubiquity of these residues suggested that constitutive alkali-labile sites are part of the structural configuration of the koala sperm nucleus. Spermatozoa with “true” DNA fragmentation exhibited a continuum of comet morphologies, ranging from a more severe form of alkaline-susceptible DNA, to nuclei that exhibited both SSB and DSB. Swelling of koala sperm chromatin following cryopreservation has largely been attributed to the absence of inter-molecular disulphide cross-linkages in the marsupial sperm nucleus. Fish spermatozoa also lack disulphide bonds within their chromatin, but nevertheless, have been successfully cryopreserved. To examine the hypothesis that the cryoprotectants used for fish sperm cryopreservation will confer a similar degree of protection on koala spermatozoa, various concentrations of five cryoprotectants (dimethyl sulphoxide, methanol, propylene glycol, ethylene glycol and dimethylacetamide) were evaluated. Each treatment was compared against an established koala sperm cryopreservation protocol that uses 14% glycerol. Dimethylacetamide at a concentration of 12.5% (v/v) was found to be comparable to glycerol in the successful cryopreservation of koala spermatozoa although high inter-male variability was observed. However, when the new protocol was subsequently validated for a larger population of captive koalas (n = 22), glycerol emerged the better cryoprotectant with respect to all sperm viability parameters assessed except for that of the incidence of chromatin relaxation, which was not affected by the cryoprotectant. Significant difference was also observed in the post-thaw survival of spermatozoa from different animals, which was independent of pre-freeze semen quality. Based on post-thaw semen viability parameters, the koalas could be divided into two distinct groups, where one group had significantly higher sperm viability compared to the other group, regardless of cryoprotectant used. Positive correlation between motility and MMP was observed before and after cryopreservation. However, cryopreservation significantly reduced the dependency between these variables (P < 0.001), suggesting that cryopreservation reduced the dependency between mitochondrial function and motility.
295

Functional Approaches to the Development of Koala Sperm Cryopreservation Techniques

Yeng Zee Unknown Date (has links)
The primary objective of the studies described in this thesis was to improve the cryopreservation success of koala spermatozoa for the purpose of establishing a genome resource bank for this species. A defining feature of the studies in this thesis was the implementation of an organelle-specific approach to better understand the causes of koala sperm cryo-injury. The functional attributes of spermatozoa, such as mitochondrial function, plasma membrane fluidity, membrane lipid asymmetry and DNA integrity were assessed as an indication of cryo-injury. Sperm mitochondrial function and plasma membrane integrity were examined by cryomicroscopy using the fluorescent probes JC-1 and propidium iodide (PI) respectively in a dual staining technique. Cooling and re-warming koala spermatozoa were more detrimental to mitochondrial function than to plasma membrane integrity. Mitochondrial membrane potential (MMP) was suppressed by freezing and thawing treatments; after thawing, MMP declined significantly during rewarming (from 5ºC to 35ºC). The distribution of GM1 ganglioside was examined using fluorescent-labelled cholera toxin B. No significant redistribution of GM1 was observed after chilling or cryotreatment. The externalisation of phosphatidylserine (PS) was examined using fluorescent-labelled annexin V. There was no significant increase in translocation of PS after chilling or cryopreservation. These observations imply that cryotreatment had little effect on plasma membrane lipid asymmetry. Koala spermatozoa were incubated in a range of anisotonic media to investigate whether nuclear swelling was caused by osmotic flux during the cryopreservation process. Although the most hypotonic solution tested (64 mOsm/kg) induced the highest incidence of nuclear relaxation (mean ± SEM; 12 ± 3%), this was not as severe as that previously documented following cryopreservation. Chromatin relaxation is a phenomenon observed in koala spermatozoa, where the sperm nucleus expands due to the result of structural changes in the natural conformation of the sperm DNA/protamine complex. DNA fragmentation was not a primary cause of cryopreservation-induced sperm chromatin relaxation, although in situ nick translation of putative DNA breaks indicated that these increased as the sperm head became progressively more relaxed. Using a Sperm Chromatin Dispersion test (SCDt) specifically developed and validated for koala spermatozoa, a continuum of nuclear morphotypes was observed, ranging from no apparent DNA fragmentation to spermatozoa with highly dispersed and degraded chromatin. A double comet assay was also developed to investigate DNA fragmentation in the koala spermatozoa. Conducted under neutral followed by alkaline conditions, this assay was able to differentiate between single- (SSB) and double-stranded (DSB) DNA damage in an effort to refine the interpretation of DNA damage in mature koala spermatozoa; the majority of the koala spermatozoa had nuclei with DNA abasic-like residues. The ubiquity of these residues suggested that constitutive alkali-labile sites are part of the structural configuration of the koala sperm nucleus. Spermatozoa with “true” DNA fragmentation exhibited a continuum of comet morphologies, ranging from a more severe form of alkaline-susceptible DNA, to nuclei that exhibited both SSB and DSB. Swelling of koala sperm chromatin following cryopreservation has largely been attributed to the absence of inter-molecular disulphide cross-linkages in the marsupial sperm nucleus. Fish spermatozoa also lack disulphide bonds within their chromatin, but nevertheless, have been successfully cryopreserved. To examine the hypothesis that the cryoprotectants used for fish sperm cryopreservation will confer a similar degree of protection on koala spermatozoa, various concentrations of five cryoprotectants (dimethyl sulphoxide, methanol, propylene glycol, ethylene glycol and dimethylacetamide) were evaluated. Each treatment was compared against an established koala sperm cryopreservation protocol that uses 14% glycerol. Dimethylacetamide at a concentration of 12.5% (v/v) was found to be comparable to glycerol in the successful cryopreservation of koala spermatozoa although high inter-male variability was observed. However, when the new protocol was subsequently validated for a larger population of captive koalas (n = 22), glycerol emerged the better cryoprotectant with respect to all sperm viability parameters assessed except for that of the incidence of chromatin relaxation, which was not affected by the cryoprotectant. Significant difference was also observed in the post-thaw survival of spermatozoa from different animals, which was independent of pre-freeze semen quality. Based on post-thaw semen viability parameters, the koalas could be divided into two distinct groups, where one group had significantly higher sperm viability compared to the other group, regardless of cryoprotectant used. Positive correlation between motility and MMP was observed before and after cryopreservation. However, cryopreservation significantly reduced the dependency between these variables (P < 0.001), suggesting that cryopreservation reduced the dependency between mitochondrial function and motility.
296

Diagnosis of Leber’s hereditary optic neuropathy (LHON) : analysis of MT-ND1, MT-ND4 and MT-ND6 in patients with LHON

Ågersten, Alexandra January 2009 (has links)
<p>Leber´s hereditary optic neuropathy (LHON), a disease affecting vision, is caused by several point mutations in mitochondrial DNA. Mutations leading to a defect NADH ubiquinone oxidoreductase protein will affect the respiratory chain and cause a disturbed ATP production. It is still unknown why this defect leads to the degeneration of retinal ganglion cells and cells in the opticus nerve as well as demyelination of axons in these areas. Analysis of mitochondrial DNA is an important tool in the diagnosis of the disease. At the present time analysis is based on cleavage by restriction enzymes, which only detects two of the most frequent mutations: m.3460G>A and m.11778G>A. This is far too few considering that more than 30 mutations are known to be associated with LHON. Therefore a new analysis method is requested. Here we describe a method based on the sequencing of the mitochondrial genes MT-ND1, MT-ND4 and MT-ND6, which will detect more than 15 different point mutations associated with the disease. To validate the analysis, DNA from 31 patients with LHON symptoms were sequenced; of these 10 were found to be positive for a LHON mutation. This result indicates that the sequencing analysis will be more effective in diagnosis of LHON than restriction enzymes.</p> / <p>Lebers hereditära optikus neuropati (LHON) är en sjukdom som beror på genetiska förändringar i arvsmassan som leder till att cellens energiomsättning rubbas. Detta gör att nervceller i ögat och synnerven bryts ned vilket leder till en synnedsättning. En patient som drabbas av LHON har inga symptom fram till dess att synen börjar försämras. Sjukdomsförloppet går snabbt och på bara några veckor är patienten ofta helt blind. Diagnostik av LHON idag utgörs av flera undersökningar av öga och synfält. Diagnosen bekräftas av en analys av arvsmassan som finns i mitokondrien, cellens energifabrik. Här beskriver vi en ny förbättrad analysmetod baserad på DNA sekvensering, dvs. bestämning av baserna i mitokondriella arvsmassan. För att utvärdera analysen har vi undersökt 31 patienter med misstänkt LHON - av dessa visade sig 10 bära på en sjuklig förändring. Resultatet visar att sekvensering med fördel kan ersätta den tidigare analysmetoden då fler sjukliga förändringar kan påvisas och utförandet av analysen är mer användarvänligt.</p>
297

Phylogeography of the Marsh Rice Rat (Oryzomys palustris) in Wetlands of the Southeastern United States

Indorf, Jane Leah 06 August 2010 (has links)
The marsh rice rat (Oryzomys palustris) is a semi-aquatic rodent endemic to the southeastern United States. Unlike most terrestrial small mammals, the marsh rice rat can easily disperse over water and has a close association with wetlands. These specialized traits have likely greatly shaped the genetic structure and diversity within this species. I studied genetic patterns within the marsh rice rat to understand how this species' specialized ecology, as well as the geologic and climatic history of the southeastern United States, affected the genetic structuring within this species. The phylogeography of many species in the southeastern United States has been studied and concordant geographic patterns of genetic variation exist among many of these species. Researchers have hypothesized that the biogeography of the southeastern United States has been influenced by the Pleistocene glacial cycles, producing similar genetic patterns within unrelated species. I first examined genetic patterns within the marsh rice rat at the macro scale of phylogenetics. This nominal species actually represents two cryptic species; populations in the eastern and western regions of its range are genetically divergent. I also identified three subspecies, in contrast to the six morphological subspecies historically recognized. The silver rice rat in the Lower Florida Keys and the Sanibel Island rice rat from Sanibel Island Florida are both subspecific taxa. Only one mainland marsh rice rat subspecies exists. I then studied the phylogeographic patterns within the marsh rice rat and determined that geographic patterns of genetic variation in this species are not concordant with the phylogeographic patterns uncovered in most other species of the southeastern United States. The genetic structuring within the marsh rice rat has been influenced not only by the geologic and climatic history of this region, but also by the species' semi-aquatic adaptation. I also studied genetic patterns at a micro scale by estimating present levels of gene flow and genetic diversity within populations. Gene flow is a contemporary factor in maintaining levels of genetic diversity within populations of the marsh rice rat. From the macro scale of phylogenetics to the micro scale of population genetics, the genetic structure of the marsh rice rat has been shaped by past climatic history and by this species' specialized ecology.
298

Variation of mitochondrial control region sequences of Steller sea lions: the three-stock hypothesis

Baker, Alyson Renee 30 September 2004 (has links)
Sequence variation of a 238 bp segment of the mitochondrial control region was analyzed for 1,568 Steller sea lions (2.8% of the estimated species population) sampled from 50 rookeries representing nearly every locality at which Steller sea lions are known to breed in significant numbers. Haplotype diversity (H = 0.9164 ± 0.0035) was high and nucleotide diversity (π = 0.00967 ± 0.00586) was moderate. No evidence was observed for significant genetic bottleneck effects. Rookeries were grouped into regions and stocks to examine structure at different spatial scales. F- and Φ-statistics were computed for all pairwise comparisons of rookeries, regions and stocks. Significant (P<0.05) divergence of eastern stock (southeastern Alaska to California) animals from western stock animals was supported in analyses at all spatial scales. Likewise, rookeries and regions from Asia were found to be significantly different from all other western stock rookeries. This was most clearly demonstrated using Φ-statistics at the regional level. The Commander Islands clearly associate with Alaskan western stock rookeries, not with the Asian rookeries. Within each of the three stocks there is significant isolation by distance among rookeries. This relationship does not hold for inter-stock comparisons indicating that there are important barriers to gene flow among stocks. Mitochondrial DNA analysis supports the recognition of three stocks for appropriate conservation of the species. The currently recognized eastern stock is unaffected, but the western stock is now partitioned west of the Commander Islands yielding a western stock which ranges from Prince William Sound west to the Commander Islands, and an Asian stock including rookeries from the Kamchatka Peninsula, Kuril Islands, and Sea of Okhtosk.
299

Immunohistochemical fiber typing, ultrastructure, and morphometry of harbor seal skeletal muscle

Watson, Rebecca Reiko 30 September 2004 (has links)
There is strong evidence that the skeletal muscles of pinnipeds are adapted for an aerobic, lipid-based metabolism under the hypoxic conditions associated with breath-hold diving. However, regional variations in mitochondrial density are unknown, and the few fiber typing studies performed on pinniped skeletal muscles are not consistent with an aerobic physiological profile. Thus, the objectives of this study were to (1) reexamine the fiber type distribution throughout the primary locomotory muscles of the harbor seal, and (2) to better understand the density and distribution of mitochondria in the locomotory muscles. Multiple samples from transverse sections of the epaxial muscles and a single sample of the pectoralis muscle of wild harbor seals were analyzed using immunohistochemical fiber typing and electron microscopy. Fiber typing results indicated that harbor seal epaxial muscles are composed of 47.4% type I (slow twitch, oxidative) fibers and 52.8%, IIa (fast twitch, oxidative) fibers. No fast twitch, glycolytic (type IIb) fibers were detected in the epaxial muscles or the pectoralis muscle. Mean volume density of mitochondria [Vv(mt,f)] was 5.6%, which is elevated over what would be predicted for a terrestrial mammal of similar mass. The elevated Vv(mt,f) had a high proportion of intermyofibrillar mitochondria, a trait not normally found in the muscles of terrestrial mammals with elevated Vv(mt,f). These results provide further evidence that the elevated mitochondrial volume density in pinniped muscle decreases the oxygen diffusion distance between myoglobin and mitochondria to facilitate aerobic respiration in working muscles. In addition, analyses of heterogeneity revealed that the regions of the epaxial muscles that were located deep within the muscle showed a significantly higher Vv(mt,f) relative to those regions that were superficially-located. In contrast, there was no significant heterogeneity of fiber type detected in either plane of the epaxial muscles. Thus, there was a fine-scale pattern of spatial heterogeneity of Vv(mt,f) within the epaxial muscles that does not manifest in fiber type distribution, indicating that the fibers have similar oxidative capacities.
300

Diagnosis of Leber’s hereditary optic neuropathy (LHON) : analysis of MT-ND1, MT-ND4 and MT-ND6 in patients with LHON

Ågersten, Alexandra January 2009 (has links)
Leber´s hereditary optic neuropathy (LHON), a disease affecting vision, is caused by several point mutations in mitochondrial DNA. Mutations leading to a defect NADH ubiquinone oxidoreductase protein will affect the respiratory chain and cause a disturbed ATP production. It is still unknown why this defect leads to the degeneration of retinal ganglion cells and cells in the opticus nerve as well as demyelination of axons in these areas. Analysis of mitochondrial DNA is an important tool in the diagnosis of the disease. At the present time analysis is based on cleavage by restriction enzymes, which only detects two of the most frequent mutations: m.3460G&gt;A and m.11778G&gt;A. This is far too few considering that more than 30 mutations are known to be associated with LHON. Therefore a new analysis method is requested. Here we describe a method based on the sequencing of the mitochondrial genes MT-ND1, MT-ND4 and MT-ND6, which will detect more than 15 different point mutations associated with the disease. To validate the analysis, DNA from 31 patients with LHON symptoms were sequenced; of these 10 were found to be positive for a LHON mutation. This result indicates that the sequencing analysis will be more effective in diagnosis of LHON than restriction enzymes. / Lebers hereditära optikus neuropati (LHON) är en sjukdom som beror på genetiska förändringar i arvsmassan som leder till att cellens energiomsättning rubbas. Detta gör att nervceller i ögat och synnerven bryts ned vilket leder till en synnedsättning. En patient som drabbas av LHON har inga symptom fram till dess att synen börjar försämras. Sjukdomsförloppet går snabbt och på bara några veckor är patienten ofta helt blind. Diagnostik av LHON idag utgörs av flera undersökningar av öga och synfält. Diagnosen bekräftas av en analys av arvsmassan som finns i mitokondrien, cellens energifabrik. Här beskriver vi en ny förbättrad analysmetod baserad på DNA sekvensering, dvs. bestämning av baserna i mitokondriella arvsmassan. För att utvärdera analysen har vi undersökt 31 patienter med misstänkt LHON - av dessa visade sig 10 bära på en sjuklig förändring. Resultatet visar att sekvensering med fördel kan ersätta den tidigare analysmetoden då fler sjukliga förändringar kan påvisas och utförandet av analysen är mer användarvänligt.

Page generated in 0.0935 seconds