• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 605
  • 279
  • 144
  • 58
  • 31
  • 16
  • 10
  • 8
  • 8
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • Tagged with
  • 1397
  • 523
  • 236
  • 211
  • 164
  • 147
  • 122
  • 102
  • 101
  • 95
  • 94
  • 90
  • 89
  • 86
  • 84
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
281

Control of the biogenesis of the OXPHOS complexes and their interactions in Saccharomyces cerevisiae / Contrôle de la biogenèse des complexes OXPHOS et de leurs interactions chez Saccharomyces cerevisiae

Ostojic, Jelena 18 September 2013 (has links)
Le complexe III de la chaine respiratoire mitochondriale (OXPHOS III) chez S. cerevisiae est assemblé à partir de dix sous-unités structurales codées par le génome soit nucléaire, soit mitochondrial et fait intervenir une douzaine de protéines extrinsèques au complexe. Nous avons étudié l’une d’entre elle, Bcs1, une ATPase oligomérique conservée de la famille des protéines AAA (ATPases Associated with diverse cellular Activities), qui contrôle la dernière étape de l’assemblage du complexe III. Chez l’Homme, des mutations dans l’orthologue de BCS1, BCS1L, sont associées à différentes maladies. Nous avons montré que des mutations dans les résidus conservés du domaine AAA de Bcs1 peuvent être compensées par des mutations dans les sous-unités de l’ATP synthase mitochondriale (OXPHOS V). Ces mutations compensatrices diminuent toutes l’activité d’hydrolyse de l’ATP de l’enzyme et nous avons proposé que la biogenèse du complexe III puisse être modulée selon l’état énergétique mitochondrial par Bcs1 via sa dépendance à l’ATP. Nous avons aussi identifié des mutations compensatrices dans d’autres gènes et le cas particulier de la délétion du RRF1, facteur général du recyclage des ribosomes mitochondriaux, a été étudié. Nous avons montré que l’absence de Rrf1 a un effet différent sur la stabilité et la traduction des divers ARNm mitochondriaux. Nos résultats suggèrent une coopération entre les facteurs généraux et les facteurs spécifiques de la traduction mitochondriale dans le contrôle de l’expression des sous-unités des complexes OXPHOS traduites dans la mitochondrie. / OXPHOS complexes are multi-subunit complexes embedded in the inner mitochondrial membrane. We have studied the assembly factor Bcs1 that is a membrane-bound AAA-ATPase, required for the assembly of complex III. Mutations in the human gene BCS1L are responsible for various mild to lethal pathologies. Extragenic compensatory mutations able to restore the assembly of complex III in yeast bcs1 mutants were found in different genes not directly connected to the complex, revealing new networks of protein interactions. Mutations in catalytic subunits of ATP synthase were identified and thoroughly characterized. This work has allowed us to propose a novel regulatory loop via the ATP-dependent activity of Bcs1 protein, connecting the production of mitochondrial complex III and the activity of the ATP synthase. Moreover, these results hold promise for the development of therapies, targeting the mitochondrial adenine nucleotide pool, in treatment of BCS1-based disorders. We also show that the absence of RRF1, a mitochondrial ribosome recycling factor, is able to compensate defects of bcs1 mutants. Deletion of RRF1 has a differential impact on the stability and translation of mitochondrial mRNAs. Our results suggest cooperation between general and specific translation factors in controlling the expression of mtDNA-encoded subunits of the OXPHOS complexes.
282

Be Eaten to Stay Healthy: Elucidating the Mechanisms of Mitochondrial Quality Control by Mitophagy

de Vries, Rosa Leonora Andrea January 2013 (has links)
Mitochondria are essential organelles that provide the cell with energy and are involved in many housekeeping processes. Maintaining a healthy population of mitochondria is vital for the proper functioning of cells and the presence of dysfunctional mitochondria may lead to cellular damage and cell death. Neurons are particularly susceptible to the consequences of mitochondrial damage as they have high energy needs and are post-mitotic. The clearance of damaged mitochondria by autophagy, or mitophagy, has emerged as an important quality control mechanism. The Parkinson's disease related proteins phosphatase and tensin homolog-induced putative kinase 1 (PINK1) and Parkin have been identified as important regulators of mitophagy in mammalian cells, directly linking mitophagy to neurodegeneration. The role of these two proteins in this mitophagy is further explored in the first part of this dissertation. We propose a model whereby a cleavage product of PINK1 in the cytosol binds Parkin and prevents its translocation to mitochondria, which is regarded as the initiating step in Parkin/PINK1 mitophagy. Upon the occurrence of mitochondrial damage, however, full-length PINK1 accumulates on the mitochondrial outer membrane (MOM) and recruits Parkin, marking the damaged mitochondria for mitophagy. In the second part, we assess mitophagy in a cellular model based on disease caused by mutations in mitochondrial DNA (mtDNA). We find that the mere presence of damaged mitochondria in the cell does not activate mitophagy. Rather, this process is a complex interplay between mitochondrial membrane potential, levels of PINK1/Parkin and the activation of general macroautophagy. The final part of this dissertation describes the development and validation of a new method to study mitophagy. MitophaGFP, a red-green tandem fluorescent protein targeted to the MOM, changes color from yellow to red once mitochondria enter lysosomes, the final step of the mitophagy process. This new probe allows us to quantitatively and qualitatively assess mitophagy and fulfills a need in the mitophagy field. The work described in this dissertation contributes to elucidate the mechanisms underlying mitophagy regulation in mammalian cells. Its findings can serve as a basis to further explore the importance of mitophagy as a quality control mechanism and the role of its defect in neurodegeneration.
283

Análise de polimorfismos do DNA mitocondrial em indivíduos residentes na grande São Paulo para aplicação na identificação humana

Paneto, Greiciane Gaburro [UNESP] 30 June 2010 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:30:57Z (GMT). No. of bitstreams: 0 Previous issue date: 2010-06-30Bitstream added on 2014-06-13T21:01:41Z : No. of bitstreams: 1 paneto_gg_dr_arafcf_parcial.pdf: 173215 bytes, checksum: 2ba141316e57f525b9ed10acf6c7e979 (MD5) / Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) / A identificação humana por meio da análise de DNA utiliza o perfil genético de um indivíduo baseado na combinação de diversos marcadores que são herdados de seus progenitores. Estes marcadores são geralmente diferenças nas sequências de DNA nuclear entre os indivíduos (polimorfismos). Em alguns casos, entretanto, a análise do DNA nuclear não pode ser aplicada. Isso ocorre quando o DNA da amostra apresenta-se degradado ou em casos onde o material biológico não apresenta o DNA nuclear. Nestes casos, a análise do DNA mitocondrial (DNA mt) é o método de escolha. Entretanto, em um mesmo indivíduo podem existir populações de DNA mt diferentes, fenômeno denominado heteroplasmia. Este trabalho teve como objetivo o estudo de polimorfismos presentes no DNA mt de indivíduos residentes na Grande São Paulo para aplicação na Identificação Humana. Para isso, foi sequenciada toda a região hipervariável do DNA mt de 160 indivíduos. Além disso, o SNP 3010 foi analisado por discriminação alélica (PCR em tempo real) para estudo do aumento do poder discriminatório quando os indivíduos não puderam ser diferenciados pela análise da região hipervariável. Foi desenvolvido, também, uma reação de SNaPshot em multiplex contendo 42 SNPs que permitiram a classificação das amostras em haplogrupos do DNA mt. Por fim, foram analisadas 100 amostras de cabelo dos mesmos indivíduos para o estudo da frequência de heteroplasmia na região HV3 do DNA mt. De um total de 160 amostras, 144 haplótipos diferentes foram encontrados quando analisamos toda a região hipervariável do DNA mt; 131 haplótipos foram únicos. O SNP 3010 foi suficientemente discriminatório para conseguir distinguir indivíduos que apresentavam o mesmo haplótipo em dois dos treze casos que apresentavam mais de um indivíduo com o mesmo haplótipo / The human identification by DNA analysis uses the genetic profile of an individual based on the combination of diverse markers that are inherited of its ancestors. These markers are generally differences in sequences of nuclear DNA between individuals (polymorphisms). In some cases, however, the analysis of the nuclear DNA cannot be applied. It occurs when the DNA sample is degraded or in cases which the biological material does not content nuclear DNA. In these cases, the mitochondrial DNA (mtDNA) analysis is the choice method. However, inside one individual can exist different mtDNA populations, phenomenon called heteroplasmy. The aim of this work was to study mtDNA polymorphisms in individuals residents in São Paulo metropolitan area for application in Human Identification. For this, we have sequenced the entire hypervariable region of mtDNA for 160 individuals. Furthermore, the SNP 3010 was analyzed by allelic discrimination (Real-Time PCR) to study the increase of the discriminatory power when individuals could not be differentiated by analysis of the hypervariable region. It was developed also, a SNaPshot multiplex reaction containing 42 SNPs that allowed the classification of samples in mtDNA haplogroups. Finally, 100 hair samples, from the same individuals, were analyzed for the study of heteroplasmy frequency in the HV3 region of mtDNA. Among 160 samples, 144 different haplotypes were found when the entire hypervariable region of mtDNA was analyzed; 131 haplotypes were unique. The SNP 3010 SNP was able to distinguish individuals who had the same haplotype in two of thirteen cases with more than one individual with the same haplotype. Our population was classified in 46.6% of African, 27.3% of European, 25.5% of Native American and 0.6% Asian origin using the SNaPshot panel of 42 SNPs in multiplex
284

Developing mouse complex I as a model system : structure, function and implications in mitochondrial diseases

Agip, Ahmed-Noor January 2018 (has links)
Complex I (NADH:ubiquinone oxidoreductase), located in the mitochondrial inner membrane, is a major electron entry point to the respiratory chain. It couples the energy released from electron transfer (from NADH to ubiquinone) to the concomitant pumping of protons across the membrane, to generate an electrochemical proton motive force. Mammalian complex I is composed of 45 subunits, 14 of which comprise its simpler bacterial homologues. It is encoded by both the mitochondrial and nuclear genomes, and pathological mutations in both sets of subunits result in severe neuromuscular disorders such as Leigh syndrome. Several structures of mammalian complex I from various organisms have been determined, but the limited resolutions of the structures, which typically refer to poorly characterised enzyme states, has hampered detailed analyses of mechanistic features. The first part of this thesis describes development of a method for purifying complex I from the genetically amenable and medically relevant model organism Mus musculus (mouse), in a pure, stable and active state. The enzyme from mouse heart mitochondria was then comprehensively characterised, to ensure the presence of all the expected subunits and co-factors, and to define its kinetic properties. The second part of this thesis describes structural studies by single particle electron cryomicroscopy (cryo-EM) on the purified mouse enzyme in two distinct states, the 'active' and 'de-active' states. The active state was determined to 3.3 Å resolution, the highest resolution structure of a eukaryotic complex I so far. Subsequently, comparison of the two mouse structures, together with previously determined mammalian and bacterial structures, revealed variations in key structural elements in the membrane domain, which may be crucial for the catalytic mechanism. Moreover, in the high-resolution active mouse complex I structure a nucleotide co-factor was observed bound to the nucleoside kinase subunit NDUFA10. Finally, complex I from the Ndufs4 knockout mouse model, which recapitulates the effects of a human mutation that causes Leigh syndrome, was purified and subjected to kinetic and proteomic analyses. Following cross-linking and preliminary structural studies, it was concluded that the detrimental effects of deleting NDUFS4 are due to lack of stability of the mature complex.
285

A genome wide approach to stress response and chronological ageing in yeast

Cao, Lu January 2018 (has links)
Caloric restriction (CR) extends lifespan from yeast to mammals. In budding yeast, inhibition of the conserved TOR and/or PKA pathways has been shown to mediate lifespan extension by CR partly through the activation of stress response. However, how the stress response is regulated at the systems level is poorly understood. In this study, by using fluorescent reporters whose expression is dependent on the transcription factors Msn2/4 and Gis1, two separate screenings were conducted to reveal novel regulators of the stress response induced by starvation. A 'focused' screening on the 272 'signalling' mutants revealed that, apart from the previously identified Rim15, Yak1 and Mck1 kinases, the SNF1/AMPK complex, the cell wall integrity (CWI) pathway and a number of cell cycle regulators are necessary to elicit appropriate stress response. The chronological lifespan (CLS) of these signalling mutants correlates well with the amount of accumulated storage carbohydrates but poorly with transition-phase cell cycle status. Subsequent analyses reveal that the levels of intracellular reactive oxygen species are controlled by Rim15, Yak1 and Mck1. Furthermore, CLS extension enabled by tor1 deletion is dependent on the above three kinases. These data suggest that the signalling pathways (SNF1 and CWI) and the kinases downstream of TOR/PKA (Rim15, Yak1 and Mck1) coordinate the metabolic reprogramming (to accumulate storage carbohydrates) and the activation of anti-oxidant defence systems (to control ROS levels) to extend chronological lifespan. A 'genome-wide' screening of a haploid deletion library indicates that less than 10% of the non-essential genes are implicated in the regulation of starvation-induced stress response. Gene ontology analysis suggests that they can be grouped into major clusters including mitochondrial function, r-RNA processing, DNA damage and repair, transcription from RNA polymerase and cell cycle regulation. Further phenotypic assays confirm the previous observation that CLS extension is mostly correlated with the accumulation of storage carbohydrates. Compromised expression of stress response reporters is confirmed by FACS in a variety of mitochondrial mutants, suggesting that mitochondrial respiration also plays a key role in the activation of stress response. Put together, the above findings indicate that stress response and metabolic reprogramming induced by glucose starvation are coordinated by multiple signalling pathways and the activation of mitochondrial respiration is essential to both cellular processes and to CLS extension.
286

Mitochondrial dynamics in demyelinated axons in a cerebellar slice culture system

Licht-Mayer, Simon January 2018 (has links)
Axonal degeneration is the major cause of disability in progressive multiple sclerosis (MS). It has been shown that in MS and relevant disease models, demyelinated axons harbor an increased number of mitochondria, which is reflected in bigger stationary sites of mitochondria, increased mitochondrial activity and increased transport speed of mitochondria. This axonal response of mitochondria to demyelination (ARMD) is protective, as there is an increase in energy demand due to the redistribution of sodium channels along the axon following demyelination. However, it remains to be determined how this ARMD is mounted and how mitochondrial dynamics are involved. By using in vivo and in vitro systems we are determined to elucidate the transport and fusion dynamics of the ARMD and where these additional mitochondria come from. Using a cerebellar slice culture system with lysolecithin induced demyelination, we show that the increase in mitochondrial occupancy of the axon already occurs at 24 hours after demyelination and plateaus around 3 to 4 days after demyelination. At 24 hours, there was a steep increase in the mitochondrial numbers inside the axon, which is then followed by an increase in mitochondrial size over the following days. All parameters decrease again over the following days, but remain elevated compared to baseline even 12 days after demyelination. To determine the source of these additional mitochondria and to assess the fusion dynamics within the axon, we used a lentivirus expressing a mitochondrial targeted photoconvertible dye (mEOS2) to label mitochondria in Purkinje cells. The mitochondria that are labelled green in the Purkinje cell axons are then photoconverted to red by illuminating the initial part of the axon with a 405-nm laser and imaged over the following 20 minutes to determine the transport and fusion dynamics. This showed an increased number of mitochondria moving from the cell body into the axon, as well as an increase in retrograde transport of mitochondria in the demyelinated compared to the myelinated axons. Furthermore the size of newly transported mitochondria and their speed was increased in the anterograde direction. Furthermore, the fusion rate of newly transported mitochondria with stationary converted mitochondria was increased in the demyelinated axons compared to myelinated control. These changes can also be observed in unmyelinated axons, as well as axons of cerebellar slices of the dysmyelinating shiverer mutant with or without lysolecithin treatment. The manipulation of mitochondrial dynamics after demyelination with the fission inhibitor mdivi-1 and the ATPase inhibitor oligomycin both showed an increasing or decreasing effect on the mitochondrial parameters after demyelination respectively. The effect on the axonal health after demyelination was detrimental with both of these treatments. Increasing mitochondrial biogenesis with pioglitazone increased axonal mitochondrial parameters, as well as ameliorated axonal damage after demyelination with lysolecithin. As the neuronal cell bodies in MS harbour mitochondrial DNA deletions, which affects their physiology, including energy production efficiency, another aim of this thesis was to model this deficiency in vitro. As it was not possible to model these mitochondrial defects in vitro within the experiments of this thesis, the characterization of a mitochondrial mutant in vivo model was done as a contribution to a greater set of experiments performed by other members of the Mahad lab.
287

Origem e rotas de introdução de Plasmodium vivax e Plasmodium falciparum nas Américas. / Origin and date of introduction of Plasmodium vivax and Plasmodium falciparum in the Americas.

Rodrigues, Priscila Thihara 15 May 2017 (has links)
A origem geográfica e rotas de dispersão dos dois mais importantes parasitas da malária humana, Plasmodium falciparum e P. vivax, continuam controversos. Para entender a história evolutiva destes parasitos propomos neste projeto inferir as vias e as datas de introdução de P. vivax e P. falciparum nas Américas, com base na análise do genoma mitocondrial completo de parasitos coletados em todas as regiões endêmicas, além de analisar a existência da relação genética entre os isolados de P. vivax e P. simium e inferir a possível transmissão lateral. O alinhamento de 941 sequências de P. vivax e 1795 de P. falciparum permitiram agrupar os isolados em quatro regiões distintas. As rotas migratórias de P. vivax sugere que o continente americano foi colonizado em diferentes momentos e por parasitos de diferentes regiões África, Sul da Ásia e Melanésia, explicando a alta diversidade genética existente neste continente, enquanto que P. falciparum foi introduzido nas Américas por duas regiões distintas, África e Sudeste Ásiático. Já os 10 isolados de P. simium sequenciado neste estudo apresentaram uma menor diversidade genética quando comparado com os isolados de P. vivax, sugerindo que a direção da transmissão lateral foi de humanos para macacos. / The geographical origin and dispersal routes of the two most important human malaria parasites, Plasmodium falciparumand P. vivax, remain controversial. In order to understand the evolutionary history of these parasites this project aims to infer the routes and dates of introduction of P. vivax and P. falciparum in the Americas. Analysis were based on complete mitochondrial genomes of parasites collected in all endemic regions, and we explored the existence of a genetic relationship between P. vivax and P. simium isolates to infer a possible lateral transmission route. The alignment of 941 sequences of P. vivax and 1795 of P. falciparum made it possible to group the isolates into four distinct regions. The migratory routes of P. vivax suggest that the American continent was colonized at different times by parasites from different regions - Africa, South Asia and Melanesia, explaining the high genetic diversity present in this continent, while P. falciparum was introduced in the Americas from two distinct regions, Africa and Southeast Asia. The 10 P. simium isolates sequenced in this study had a lower genetic diversity when compared to P. vivax isolates, suggesting that the direction of lateral transmission was from humans to monkeys.
288

Phylogenetic Relationships of Cottids (Pisces: <em>Cottidae</em>) in Upper Snake River Basin of Western North America

Oh, Sun Yeong 01 March 2016 (has links)
Freshwater sculpins (Cottus) are common throughout temperate regions of the Northern Hemisphere. Their broad distribution in the Western North America makes them a good model for understanding phylogeographic relationships among western fishes. Within much of the interior west three lineages, C. bairdii, C. confusus, and the C. beldingii complex, are most prevalent. The distribution of these three overlap in the Snake River Basin. All occur below Shoshone Falls on the Snake River. However, only two currently reside in the Upper Snake River above the falls. An exception are the Lost River streams of central Idaho. While these streams are technically part of the Upper Snake River Basin, they do not directly connect with the Snake River. Preliminary studies with a single mitochondrial DNA (mtDNA) gene suggested multiple pathways for Cottus introduction into the Lost River stream complex. Here, three mitochondrial and five nuclear genes were examined to investigate the phylogenetic relationships of these three lineages. Sequences were obtained from 71 different populations in the Lost River streams and surrounding basins. Maximum Likelihood (ML) phylogenies were constructed using these data. Our data indicate that relationships among populations within these species are complex and that no single invasion into the Lost River streams and surrounding regions can account for the phylogenetic signals detected. Instead, it appears that multiple invasions in an evolving landscape played a significant role in the modern distribution of species in this region.
289

The Effect of Cocoa Flavanols on β-Cell Mass and Function

Rowley, Thomas John 01 August 2017 (has links)
A hallmark of type 2 diabetes (T2D) is β-cell dysfunction and the eventual loss of functional β-cell mass. Therefore, mechanisms that improve or preserve β-cell function could be used to improve the quality of life of individuals with T2D. Studies have shown that monomeric, oligomeric and polymeric cocoa flavanols have different effects on obesity, insulin resistance and glucose tolerance. We hypothesized that these cocoa flavanols may have beneficial effects on β-cell function. INS-1 832/13 derived β-cells and primary rat islets cultured with a monomeric catechin-rich cocoa flavanol fraction demonstrated enhanced glucose-stimulated insulin secretion, while cells cultured with total cocoa extract, oligomeric, or polymeric procyanidin-rich fractions demonstrated no improvement. The increased glucose-stimulated insulin secretion in the presence of the monomeric catechin-rich fraction corresponded with enhanced mitochondrial respiration, suggesting improvements in β-cell fuel utilization. Mitochondrial complex III, IV and V components were upregulated after culture with the monomer-rich fraction, corresponding with increased cellular ATP production. The monomer-rich fraction improved cellular redox state and increased glutathione concentration, which corresponds with Nrf2 nuclear localization and expression of Nrf2 target genes, including NRF-1 and GABPA, essential genes for increasing mitochondrial function. We propose a model by which monomeric cocoa catechins improve the cellular redox state, resulting in Nrf2 nuclear migration and upregulation of genes critical for mitochondrial respiration, and, ultimately, enhanced glucose-stimulated insulin secretion and β-cell function. These results suggest a mechanism by which monomeric cocoa catechins exert their effects as an effective complementary strategy to benefit T2D patients.
290

Molecular mechanisms and functions of mitochondrial calcium transport in neurons

Rysted, Jacob Eugene 01 December 2018 (has links)
During neuronal activity mitochondria alter cytosolic Ca2+ signaling by buffering then releasing Ca2+ in the cytosol. This calcium transport by mitochondria affects the amplitude, duration, and spacial profile of the Ca2+ signal in the cytosol of neurons. This buffering by mitochondria has been shown to affect a variety of neuronal functions including: neurotransmission, gene expression, cell excitability, and cell death. Recently, researchers discovered that the protein CCDC109A (mitochondrial Ca2+ uniporter) was the protein responsible for mitochondrial Ca2+ uptake. Using a genetic knockout (KO) mouse model for the mitochondrial Ca2+ uniporter (MCU) my research investigated the role of MCU in neuronal function. In cultured central and peripheral neurons, MCU-KO significantly reduced mitochondrial Ca2+ uptake while significantly increasing the amplitude of the cytosolic Ca2+ signal amplitude. Behaviorally, MCU-KO mice show a small but significant impairment in memory tasks: fear conditioning and Barnes maze. Using a maximal electroshock seizure threshold model of in vivo seizure activity my research found that MCU-KO significantly increases the threshold for maximal seizure activity in mice and significantly reduces seizure severity. In addition to mitochondrial Ca2+ uptake, my research also investigated the mechanisms involved in mitochondrial Ca2+ extrusion. The protein SLC8B1 (SLC24A6, NCLX) is the putative transporter responsible for the Na+/Ca2+ exchange, mitochondrial calcium extrusion. Using genetic NCLX-KO mice, our research found that in neurons NCLX contributes to cytosolic Ca2+ extrusion, but does seem to directly affect mitochondrial Ca2+ extrusion.

Page generated in 0.0571 seconds