• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

On-chip testing of A/D and D/A converters:static linearity testing without statistically known stimulus

Korhonen, E. (Esa) 12 October 2010 (has links)
Abstract The static linearity testing of analog-to-digital and digital-to-analog converters (ADCs and DACs) has traditionally required test instruments with higher linearity and resolution than that of the device under test. In this thesis ways to test converters without expensive precision instruments are studied. A novel calculation algorithm for the ADC differential non-linearity (DNL) and integral non-linearity (INL) estimation is proposed. The algorithm assumes that two stimuli with constant offset between them are applied to the ADC under test and that the code density histograms for both stimuli are recorded. The probability density function (PDF) of the stimulus is then solved using simple calculations so that DNL and INL of the ADC can be estimated without a priori known stimuli. If a DAC is used to generate the stimulus to ADC, all inputs and outputs are digital and the new algorithm can be used to obtain the PDF of the DAC output. Moreover, the PDF of DAC actually characterizes its INL and DNL so that this all-digital test configuration enables a simultaneous testing of both converters thanks to the new algorithm. The proposed algorithm is analyzed thoroughly both mathematically and by carrying out several simulations and experimental tests. On the basis of the analysis it is possible to approximate the impending estimation error and select the optimal value for the offset between the stimuli. In theory, the accuracy of the algorithm proposed equals that of the standard histogram method with ideal stimulus, but in practice, the accuracy is limited by that of the offset between the stimuli. Therefore, special attention is paid to development of an accurate and small offset generator which enables ratiometric test setup and solves the problems in the case of reference voltage drift. The proposed on-chip offset generator is built using only four resistors and switches. It occupies 122·22 μm2 in a 130 nm CMOS process and accuracy is appropriate for the INL testing of 12-bit converters from rail-to-rail. Based on the analysis of the influence of resistor non-linearity on the accuracy of offset, it is possible to improve the offset generator further. With discrete resistors, the INL of 16-bit ADCs was tested using a 12-bit signal generator. The proposed simple algorithm and tiny offset generator are considered to be important steps towards built-in DNL and INL testing of ADCs and DACs.
2

Single photon avalanche diodes for optical communications

Chitnis, Danial January 2013 (has links)
In order to improve the sensitivity of an optical receiver, the gain and the collection area of the photo-detectors within the receiver should be increased. Detectors with internal gain such as avalanche photodiodes (APD) are usually used to increase the sensitivity of the receiver. One problem with APDs is the sensitivity of their gain to their bias voltage, which makes them challenging to be fabricated in a standard CMOS process due to variations in their gain. However, when an APD is biased over its breakdown voltage, it is sensitive to a single photon, hence, referred to as a single photon avalanche diodes (SPAD). The SPADs are photon-counting detectors, which are less sensitive to their bias voltage, and can be integrated with rest of the electronic circuitry that form an optical receiver. An avalanche diode requires dedicated circuits to be operated in the SPAD mode. These circuits make the diode insensitive to an incident photon for a duration that is known as deadtime. Unfortunately, The collection area of the PD, APD, and SPADs are limited to their capacitance. Hence, a large photo-detector leads to a larger capacitance, which reduces the bandwidth of the receiver. In this thesis, a photon counting optical receiver based on an array of SPADs is proposed which increases the collection area with a low output capacitance. The avalanche diode and peripheral circuits which operate and readout-out the SPAD array are fabricated in the commercially available UMC 0.18 μm CMOS process. Initially, the avalanche diode is tested and characterised. A high performance circuit is then designed and tested which is able to achieve short deadtimes up to 4 ns. Once the photon counting operation of the SPAD is verified, a numerical model is developed to investigate the influence of several factors, including the deadtime, on the performance of the photon-counting detector in a communication link. Based on the simulation results, which show the advantages of an array over a single detector, a prototype detector array of 64 asynchronous SPADs is designed and tested. This array uses a high-speed readout mechanism which is inspired by the current steering digital-to-analogue converters. Bit error ratio tests (BERT) verify the photon counting capability of the proposed detector, and a bit error rate of 1E-3 has been achieved at data rate of 100 Mbps. In addition, the array of SPAD is compatible with a front-end of conventional optical receiver which uses a photodiode as a photo detector.
3

Flicker noise in cmos lc oscillators

Douglas, Dale Scott 10 November 2008 (has links)
Sources of flicker noise generation in the cross-coupled negative resistance oscillator (NMOS, PMOS, and CMOS) are explored. Also, prior and current work in the area of phase noise modeling is reviewed, including the work of Leeson, Hajimiri, Hegazi, and others, seeking the mechanisms by which flicker noise is upconverted. A Figure of Merit (FOM) methodology suitable to the 1/f3 phase noise region is also developed, which allows a new quantity, FOM1, to be defined. FOM1 is proportional to flicker noise upconverted, thus allowing the effectiveness of flicker noise upconversion suppression techniques to be evaluated, despite possibly changing bias points or tank Q, which would change phase noise and FOM in the 1/f2 region. The work of Hajimiri is extended with a simple Amplitude ISF DC component estimator for the special case of LC CMOS oscillators. A method of adaptive control of an oscillator core is presented, as well, comprised of a CMOS oscillator with a digitally adjustable N and P width, and a circuit (which is essentially a tracking ADC) which repeatedly adjusts the relative N to P width dependent on the estimate to maintain the condition of minimum flicker noise upconversion. A fixed calibration constant is sufficient to allow convergence to within 0.7dB of optimal FOM1 for all cases of N width, for a varactorless oscillator test cell. Finally, a circuit is proposed which would allow the flicker noise reduction technique of cycling to accumulation to be applied to continuous time oscillators, but is not rigorously vetted.

Page generated in 0.1099 seconds