• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 1
  • Tagged with
  • 11
  • 11
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Double Differential TOA Positioning for GSM

Nordzell, Andreas January 2013 (has links)
For most time-based positioning techniques, synchronization between the objectsin the system is of great importance. GPS (global positioning system) signalshave been found very useful in this area. However, there are some shortcomingsof these satellite signals, making the system vulnerable. The aim of this masterthesis is to investigate an alternative method for synchronization, independent ofGPS signals, which could be used as a complement. The proposed method takesadvantage of the broadcast signals from telecommunication towers, and use themfor calculation of the synchronization error between two receivers. By looking atthe time difference between arrival times at the receivers, and compare it to thetrue time difference, the synchronization error can be found. A precondition isthat the locations of the receivers as well as the tele tower are known beforehand,so that the true time difference can be calculated using geometry.The arrival times are determined through correlation between the received signalsand known training bits, which are a part of the transmission sequence. Forverification, experiments were made on localization of a mobile phone in theGSM (global system of mobile communications) network.This researchwas a collaboration with FOI, the Swedish Defense Research Agency,where most of the work was done.
2

Intelligent joint channel parameter estimation techniques for mobile wireless positioning applications

Li, Wei January 2010 (has links)
Mobile wireless positioning has recently received great attention. For mobile wireless communication networks, an inherently suitable approach is to obtain the parameters that are used for positioning estimates from the radio signal measurements between a mobile device and one or more xed base stations. However, obtaining accurate estimates of these location-dependent channel parameters is a challenging task. The focus of this thesis is on the estimation of these channel parameters for mobile wireless positioning applications. In particular, we investigate novel estimators that jointly estimate more than one type of channel parameters. We rst perform a comprehensive critical review on the most recent and popular joint channel parameter estimation techniques. Secondly, we improve a state-of-the-art technique, namely the Space Alternating Generalised Expectation maximisation (SAGE) algorithm by employing adaptive interference cancellation to improve the estimation accuracy of weaker paths. Thirdly, a novel intelligent channel parameter estimation technique using Evolution Strategy (ES) is proposed to overcome the drawbacks of the existing iterative maximum likelihood methods. Furthermore, given that in reality it is di cult to obtain the number of multipath in advance, we propose a two tier Hierarchically Organised ES to jointly estimate the number of multipath as well as the channel parameters. Finally, we extend the proposed ES method to further estimate the Doppler shift in mobile environments. Our proposed intelligent joint channel estimation techniques are shown to exhibit excellent performance even with low Signal to Noise Ratio (SNR) channel conditions as well as robust against uncertainties in initialisations.
3

Channel estimation and positioning for multiple antenna systems

Miao, H. (Honglei) 04 May 2007 (has links)
Abstract The multiple–input multiple–output (MIMO) technique, applying several transmit and receive antennas in wireless communications, has emerged as one of the most prominent technical breakthroughs of the last decade. Wideband MIMO parameter estimation and its applications to the MIMO orthogonal frequency division multiplexing (MIMO–OFDM) channel estimation and mobile positioning are studied in this thesis. Two practical MIMO channel models, i.e., correlated-receive independent-transmit channel and correlated-transmit-receive channel, and associated space-time parameter estimation algorithms are considered. Thanks to the specified structure of the proposed training signals for multiple transmit antennas, the iterative quadrature maximum likelihood (IQML) algorithm is applied to estimate the time delay and spatial signature for the correlated-receive independent-transmit MIMO channels. For the correlated-transmit-receive MIMO channels, the spatial signature matrix corresponding to a time delay can be further decomposed in such a way that the angle of arrival (AOA) and the angle of departure (AOD) can be estimated simultaneously by the 2-D unitary ESPRIT algorithm. Therefore, the combination of the IQML algorithm and the 2-D unitary ESPRIT algorithm provides a novel solution to jointly estimate the time delay, the AOA and the AOD for the correlated-transmit-receive MIMO channels. It is demonstrated from the numerical examples that the proposed algorithms can obtain good performance at a reasonable cost. Considering the correlated-receive independent-transmit MIMO channels, channel coefficient estimation for the MIMO–OFDM system is studied. Based on the parameters of the correlated-receive independent-transmit MIMO channels, the channel statistics in terms of the correlation matrix are developed. By virtue of the derived channel statistics, a joint spatial-temporal (JST) filtering based MMSE channel estimator is proposed which takes full advantage of the channel correlation properties. The mean square error (MSE) of the proposed channel estimator is analyzed, and its performance is also demonstrated by Monte Carlo computer simulations. It is shown that the proposed JST minimum mean square error (MMSE) channel estimator outperforms the more conventional temporal MMSE channel estimator in terms of the MSE when the signals in the receive antenna array elements are significantly correlated. The closed form bit error probability of the space-time block coded OFDM system with correlation at the receiver is also developed by taking the channel estimation errors and channel statistics, i.e., correlation at the receiver, into account. Mobile positioning in the non-line of sight (NLOS) scenarios is studied. With the knowledge of the time delay, the AOA and the AOD associated with each NLOS propagation path, a novel geometric approach is proposed to calculate the MS's position by only exploiting two NLOS paths. On top of this, the least squares and the maximum likelihood (ML) algorithms are developed to utilize multiple NLOS paths to improve the positioning accuracy. Moreover, the ML algorithm is able to estimate the scatterers' positions as well as those of the MSs. The Cramer-Rao lower bound related to the position estimation in the NLOS scenarios is derived. It is shown both analytically and through computer simulations that the proposed algorithms are able to estimate the mobile position only by employing the NLOS paths.
4

none

Hong, Jay 26 July 2002 (has links)
none
5

Indoor Mobile Positioning system (MPS) classification in different wireless technology domain

Ghandchi, Bahram, Saleh, Taha January 2018 (has links)
The main purpose of this thesis work is to find and compare different network characteristics of MPS (Mobile Positioning System) in the different wireless technology domains. Since decades ago MNO’s (Mobile Network Operators) added many new services based on the geographical areas of subscribers and their needs. Here we define wireless networks and go through different types of technologies and do the comparison when they collect different types of data for their location-based services and see if we could have the same accuracy with 2G (second generation) of mobile network as like as 3G (third generation) and higher. Finally, we will come up with a proposal for new age technology.
6

Evaluation and Selection of Software Architectures : A Case Study of Positioning Systems

Guerra, Adrien, Peirone, Sebastien January 2002 (has links)
The explosion of the mobile telecommunications market has resulted in the apparition of multiple applications and services. However the particular business pressure has often lead to that these systems have poor quality design and, consequently, implementation. Software system builders have realized the importance of the overall system organization to address quality requirements. Practically, they started to use, idiomatically, a number of commonly recognized solutions to guide their design of system structures. This report analyses and evaluates these solutions and comments on the result obtained when one of them was carefully selected and applied to a system of mobile positioning services. / +46708576448
7

Radio Resource Management in Bunched Personal Communication Systems

Berg, Miguel January 2002 (has links)
The traditional way of increasing capacity in a wirelesscommunication system has been cell splitting and fixedchannel-allocation based on prediction tools. However, theplanning complexity increases rapidly with the number of cellsand the method is not suitable for the large temporal andspatial traffic variations expected in the future. A lot ofresearch has therefore been performed regarding adaptivechannel allocation, where a channel can be used anywhere aslong as the signal-to-interference ratio (SIR) is acceptable. Acommon opinion is that these solutions must be decentralizedsince a centralized one would be overly complex. In this thesis, we study the locally centralizedbunch conceptfor radio resource management (RRM) in aManhattan environment and show that it can give a very highcapacity both for outdoor users and for indoor users covered byoutdoor base stations. We show how measurement limitations anderrors affect the performance and wepropose methods to handlethese problems, e.g. averaging of measured values, robustchannel selection algorithms, and increased SIR margins. Wealso study the computational and signaling complexities andshow that they can be reduced by splitting large bunches, usingsparse matrix calculations, and by using a simplified admissionalgorithm. However, a reduction of the complexity often means areduction of the system capacity. The measurements needed for RRM can also be used to find amobile terminal's geographical position. We propose and studysome simple yet accurate methods for this purpose. We alsostudy if position information can enhance RRM as is oftensuggested in the literature. In the studied scenario, thisinformation seems to be of limited use. One possible use is toestimate the mobile user's speed, to assist handover decisions.Another use is to find the location of user hotspots in anarea, which is beneficial for system planning. Our results show that the bunch concept is a promisingcandidate for radio resource management in future wirelesssystems. We believe that the complexity is manageable and themain price we have to pay for high capacity is frequentreallocation of connections. <b>Keywords:</b>bunch concept, radio resource management,network-assisted resource management, base station selection,dynamic channel allocation, DCA, channel selection,least-interfered, interference avoidance, interferenceaveraging, handover, power control, path-loss measurements,signal strength, link-gain matrix, TD-CDMA, UTRA TDD, Manhattanscenario, microcells, mobile positioning, position accuracy,trilateration, triangulation, speed estimation
8

Radio Resource Management in Bunched Personal Communication Systems

Berg, Miguel January 2002 (has links)
<p>The traditional way of increasing capacity in a wirelesscommunication system has been cell splitting and fixedchannel-allocation based on prediction tools. However, theplanning complexity increases rapidly with the number of cellsand the method is not suitable for the large temporal andspatial traffic variations expected in the future. A lot ofresearch has therefore been performed regarding adaptivechannel allocation, where a channel can be used anywhere aslong as the signal-to-interference ratio (SIR) is acceptable. Acommon opinion is that these solutions must be decentralizedsince a centralized one would be overly complex.</p><p>In this thesis, we study the locally centralized<i>bunch concept</i>for radio resource management (RRM) in aManhattan environment and show that it can give a very highcapacity both for outdoor users and for indoor users covered byoutdoor base stations. We show how measurement limitations anderrors affect the performance and wepropose methods to handlethese problems, e.g. averaging of measured values, robustchannel selection algorithms, and increased SIR margins. Wealso study the computational and signaling complexities andshow that they can be reduced by splitting large bunches, usingsparse matrix calculations, and by using a simplified admissionalgorithm. However, a reduction of the complexity often means areduction of the system capacity.</p><p>The measurements needed for RRM can also be used to find amobile terminal's geographical position. We propose and studysome simple yet accurate methods for this purpose. We alsostudy if position information can enhance RRM as is oftensuggested in the literature. In the studied scenario, thisinformation seems to be of limited use. One possible use is toestimate the mobile user's speed, to assist handover decisions.Another use is to find the location of user hotspots in anarea, which is beneficial for system planning.</p><p>Our results show that the bunch concept is a promisingcandidate for radio resource management in future wirelesssystems. We believe that the complexity is manageable and themain price we have to pay for high capacity is frequentreallocation of connections.</p><p><b>Keywords:</b>bunch concept, radio resource management,network-assisted resource management, base station selection,dynamic channel allocation, DCA, channel selection,least-interfered, interference avoidance, interferenceaveraging, handover, power control, path-loss measurements,signal strength, link-gain matrix, TD-CDMA, UTRA TDD, Manhattanscenario, microcells, mobile positioning, position accuracy,trilateration, triangulation, speed estimation</p>
9

Location based services : developing mobile GIS applications

Mocke, Charl Anthony 12 1900 (has links)
Thesis (MSc (Geography and Environmental Studies))--University of Stellenbosch, 2005. / The substantial growth of the Internet during the past few years has sparked the adaptation of several fields of current technologies to its demanding and cutting-edge standards. Mobile wireless cellular engineering and Geographic Information Systems (GIS) are two such technologies. Integrating these two technologies has resulted in the possibility of providing a type of useful functionality in the form of a technological service to the public in terms of their geographical location, named Location Based Services (LBS). An LBS can be defined as any service or application that extends spatial information processing or GIS capabilities to end users via the Internet and/or wireless networks. Thanks to wireless cellular engineering, GIS, computer programming and a little intellectual ingenuity, LBS now has the ability to provide a solution to the persisting problem of the intractable incapability of prevalent technology to extend utile spatial information to a user in terms of his/her geographical location. The purpose of this study is to investigate how geographical information, derived from GIS processing, can be supplied and presented in a useful manner to users' mobile electronic devices, using today’s available technology. A sample LBS application will demonstrate how this is achieved in the South African context. It includes features such as position location, street finding, shortest street route calculation, and map display, all on a mobile cellular device. Relevant issues such as impending wireless cellular technology, development cycles, implementation, costs, revenues and shortcomings are also discussed.
10

Using today's technologies in tomorrow's contexts

Stranne, Daniel, Eklund, Magnus January 2001 (has links)
New technologies are constantly being developed and their success depends highly on finding applications that uses them. A couple of the latest additions to this category are mobile positioning via the GSM-net and mobile Internet. They are both predicted to play an important role in the future. The problem of developing applications for these technologies are many but the most important ones are the limited performance on the current PDA?s. These limitations force the applications to be extremely cheap both on the usage of memory and the use of processor capacity. This affects which kind of applications that are possible to implement on the PDA?s. This report offers a description of a project that aimed at developing applications using mobile Internet and mobile positioning. We focus on the development of the parts that include user involvement and describe our way of dealing with a design process that aims at designing for a nonexistent context. But this report also provides an attempt at identifying what is important when designing applications for a future context. We argue the importance of both practical attempts like the Mapster project and ethnographical studies of situations in the present similar to the future context where the applications are to work. / Daniel Stranne, tel. 031-259812 Magnus Eklund, tel. 08-59087969

Page generated in 0.1388 seconds