Spelling suggestions: "subject:"modèle à deux température""
1 |
Génération et détection par couplage élasto-optique tridimensionnel de champs acoustiques picosecondes diffractésDehoux, Thomas 20 September 2007 (has links) (PDF)
L'absorption d'une impulsion laser crée un échauffement localisé suivi d'une brusque dilatation. Dès lors, un champ acoustique de plusieurs dizaines de gigahertz peut être généré. Cette méthode optique sans contact et non destructive possède des applications en micro-électronique pour la caractérisation de structures nanométriques, mais également dans des domaines plus fondamentaux. Jusqu'à présent, la dimension latérale de la tache focale des impulsions laser était très grande devant l'épaisseur des films considérés. Dès lors, la génération était unidimensionnelle et seules des ondes acoustiques planes pouvaient être engendrées. Récemment, l'utilisation de sources laser focalisées a permis de générer par diffraction des champs acoustiques tridimensionnels (3D). <br /><br />Lorsque des impulsions d'une durée inférieure à la picoseconde sont employées dans les métaux, une approche macroscopique n'est plus suffisante. Il est alors nécessaire d'expliciter les évolutions microscopiques impliquées dans le processus de génération. Ainsi, une méthode semi-analytique basée sur un modèle à deux températures 3D est développée dans la première partie de ce mémoire afin de décrire les phénomènes électroniques. En se propageant, l'onde acoustique divergente module l'indice optique en temps et en espace par couplage élasto-optique. La propagation de la lumière est alors perturbée, et sa mesure permet de caractériser la propagation acoustique. Dans la seconde partie de ce mémoire, l'interaction 3D de l'impulsion laser gaussienne avec le champ acoustique diffracté est donc modélisée.
|
2 |
Étude par dynamique moléculaire de l'ablation par impulsions laser ultrabrèves de cibles nanocristallinesGill-Comeau, Maxime 07 1900 (has links)
L’ablation de cibles d’Al nanocristallines (taille moyenne des cristallites d = 3,1 et 6,2 nm) par impulsions laser ultrabrèves (200 fs) a été étudiée par l’entremise de si- mulations combinant la dynamique moléculaire et le modèle à deux températures (two- temperature model, TTM) pour des fluences absorbées allant de 100 à 1300 J/m2. Nos simulations emploient un potentiel d’interaction de type EAM et les propriétés électro- niques des cibles en lien avec le TTM sont représentées par un modèle réaliste possédant une forme distincte dans le solide monocristallin, le solide nanocristallin et le liquide. Nous avons considéré l’effet de la taille moyenne des cristallites de même que celui de la porosité et nous avons procédé à une comparaison directe avec des cibles mono- cristallines. Nous avons pu montrer que le seuil d’ablation des métaux nanocristallins est significativement plus bas, se situant à 400 J/m2 plutôt qu’à 600 J/m2 dans le cas des cibles monocristallines, l’écart étant principalement dû à l’onde mécanique plus im- portante présente lors de l’ablation. Leur seuil de spallation de la face arrière est aussi significativement plus bas de par la résistance à la tension plus faible (5,40 GPa contre 7,24 GPa) des cibles nanocristallines. Il est aussi apparu que les contraintes résiduelles accompagnant généralement l’ablation laser sont absentes lors de l’ablation de cibles d’aluminium nanocristallines puisque la croissance cristalline leur permet d’abaisser leur volume spécifique. Nos résultats indiquent aussi que le seuil de fusion des cibles nano- cristallines est réduit de façon marquée dans ces cibles ce qui s’explique par la plus faible énergie de cohésion inhérente à ces matériaux. Nos simulations permettent de montrer que les propriétés structurelles et électroniques propres aux métaux nanocristallins ont toutes deux un impact important sur l’ablation. / The ablation of nanocrystalline (mean crystallite size d = 3.1 and 6.2 nm) Al tar- gets by ultrashort (200 fs) laser pulses was studied using hybrid simulations combining molecular-dynamics and the two-temperature model (TTM) for a range of absorbed flu- ence of 100 to 1300 J/m2. Our simulations employ an EAM interatomic potential and the TTM-related electronic properties are modelled using three distinct functions to rep- resent the monocrystalline solid, the nanocrystalline solid, and the liquid in an accurate way. Comparison between targets displaying two mean grain sizes, porous targets, and monocrystalline targets are reported. This study showed a significantly reduced abla- tion threshold of 400 J/m2 instead of the 600 J/m2 obtained for the single crystals, the discrepancy being mainly accounted for by an increase in the magnitude of the pressure wave generated during ablation. The spallation threshold of the back side of the target is also reduced owing to a lower tensile strength (5.40 GPa against 7.24 GPa). This work also allowed to discover that residual stress generally associated with laser ablation is totally absent in nanocrystalline samples as crystal growth provides a mechanism for volume reduction near the melting temperature. Furthermore, our results demonstrate that the melting threshold shows an important decrease and the melting depth an im- portant increase in the nanocrystalline samples which can be explained by their lower cohesion energy. Our simulations shed light on the fact that a realistic modelling of both structural and electronic properties of the nanocrystalline target is important to produce a reliable representation of laser ablation.
|
3 |
Étude par dynamique moléculaire de l'ablation par impulsions laser ultrabrèves de cibles nanocristallinesGill-Comeau, Maxime 07 1900 (has links)
No description available.
|
Page generated in 0.0757 seconds