Spelling suggestions: "subject:"modèles none linéaire mixtes"" "subject:"modèles noun linéaire mixtes""
1 |
Modélisation de la variabilité inter-individuelle dans les modèles de croissance de plantes et sélection de modèles pour la prévision / Modelling inter-individual variability in plant growth models and model selection for predictionBaey, Charlotte 28 February 2014 (has links)
La modélisation de la croissance des plantes a vu le jour à la fin du XXème siècle, à l’intersection de trois disciplines : l’agronomie, la botanique et l’informatique. Après un premier élan qui a donné naissance à un grand nombre de modèles, un deuxième courant a vu le jour au cours de la dernière décennie pour donner à ces modèles un formalisme mathématique et statistique rigoureux. Les travaux développés dans cette thèse s’inscrivent dans cette démarche et proposent deux axes de développement, l’un autour de l’évaluation et de la comparaison de modèles, et l’autre autour de l’étude de la variabilité inter-plantes.Dans un premier temps, nous nous sommes intéressés à la capacité prédictive des modèles de croissance de plantes, en appliquant une méthodologie permettant de construire et d’évaluer des modèles qui seront utilisés comme outils prédictifs. Une première étape d’analyse de sensibilité permet d’identifier les paramètres les plus influents afin d’élaborer une version plus robuste de chaque modèle, puis les capacités prédictives des modèles sont comparées à l’aide de critères appropriés. Cette étude a été appliquée au cas de la betterave sucrière mais peut se généraliser à d’autres plantes.La deuxième partie de la thèse concerne la prise en compte de la variabilité inter-individuelle dans les populations de plantes. Il existe en effet une forte variabilité entre plantes, d’origine génétique ou environnementale, dont il est nécessaire de tenir compte. Nous proposons dans cette thèse une approche basée sur l’utilisation de modèles (non linéaires) à effets mixtes pour caractériser la variabilité inter- individuelle. L’estimation paramétrique par maximum de vraisemblance nécessite l’utilisation de versions stochastiques de l’algorithme d’Espérance Maximisation basées sur des simulations de type Monte Carlo par Chaîne de Markov. Après une première application au cas de l’organogenèse chez la betterave sucrière, nous proposons une extension du modèle structure-fonction Greenlab à l’échelle de la population, appliqué aux cas de la betterave sucrière et du colza. / The modelling of plant growth and development was born at the end of the XXth century at the intersection of three disciplines: agronomy, botany and computer science. After a first period corresponding to the emergence of a lot of different models, a new trend has been initiated in the last decade to give these models a rigorous mathematical and statistical formalism. This thesis focuses on two main areas of development: (i) models evaluation and comparison, and (ii) inter-individual variability in plant populations.In the first part of the thesis, we study the predictive capacity of plant growth models, and we apply a two-step methodology to build and evaluate different models in a predictive perspective. In a first step, a sensitivity analysis is conducted to identify the most influential parameters and elaborate a more robust version of each model, and in a second step the predictive capacities of the models are compared using appropriate criteria. This study is carried out on sugar beet crops but can be easily generalized to other species.The second part of this thesis concerns the inter-individual variability in plant populations, which can be very high due to genetics or environmental varying conditions. This variability is rarely accounted for despite the major impact it can have at the agrosystem level. We proposed to take it into account using (nonlinear) mixed models, for which parameter estimation using maximum likelihood method relies on the use of stochastic variants of the Expectation-Maximization algorithm, based on Markov Chain Monte Carlo simulation techniques. We first apply this approach to the case of organogenesis in sugar beet populations, and secondly, we develop an extension of the functional-structural plant growth model Greenlab, from the individual to the population scale.
|
2 |
Modélisation de la variabilité inter-individuelle dans les modèles de croissance de plantes et sélection de modèles pour la prévisionBaey, Charlotte 28 February 2014 (has links) (PDF)
La modélisation de la croissance des plantes a vu le jour à la fin du XXème siècle, à l'intersection de trois disciplines : l'agronomie, la botanique et l'informatique. Après un premier élan qui a donné naissance à un grand nombre de modèles, un deuxième courant a vu le jour au cours de la dernière décennie pour donner à ces modèles un formalisme mathématique et statistique. Les travaux développés dans cette thèse s'inscrivent dans cette démarche et proposent deux axes de développement, l'un autour de l'évaluation et de la comparaison de modèles, et l'autre autour de l'étude de la variabilité inter-plantes. Dans un premier temps, nous nous sommes intéressés à la capacité prédictive des modèles de croissance de plantes, en appliquant une méthodologie permettant de construire et d'évaluer des modèles qui seront utilisés comme outils prédictifs. Une première étape d'analyse de sensibilité permet d'identifier les paramètres les plus influents afin d'élaborer une version plus robuste de chaque modèle, puis les capacités prédictives des modèles sont comparées à l'aide de critères appropriés. %Cette étude a été appliquée au cas de la betterave sucrière. La deuxième partie de la thèse concerne la prise en compte de la variabilité inter-individuelle dans les populations de plantes. %Il existe en effet une forte variabilité entre plantes, d'origine génétique ou environnementale, dont il est nécessaire de tenir compte. Nous proposons dans cette thèse une approche basée sur l'utilisation de modèles (non linéaires) à effets mixtes pour caractériser cette variabilité. L'estimation paramétrique par maximum de vraisemblance nécessite l'utilisation de versions stochastiques de l'algorithme d'Espérance Maximisation basées sur des simulations de type Monte Carlo par Chaîne de Markov. Après une première application au cas de l'organogenèse chez la betterave sucrière, nous proposons une extension du modèle structure-fonction Greenlab à l'échelle de la population.%, appliqué aux cas de la betterave sucrière et du colza.
|
Page generated in 0.0582 seconds