Spelling suggestions: "subject:"modélisation dde lla turbulence"" "subject:"modélisation dde laa turbulence""
11 |
Prédiction et modélisation d’écoulements turbulents proche de paroi / Modeling and prediction of near wall turbulent flowsSrinath, Sricharan 19 December 2017 (has links)
Le but de ce travail est d'étudier une couche limite soumise à un gradient de pression et de la comparer avec une couche limite de plaque plane à grands nombres de Reynolds. Dans ce cadre, l’accent est mis sur le comportement des structures cohérentes à grande échelle. En raison de leur grande longueur, ces structures ne sont pas faciles à extraire et à caractériser en utilisant des techniques de mesure standard. Pour cette raison, des dispositifs expérimentaux spécifiques utilisant la PIV dans les plans longitudinaux et parallèles à la paroi ont été conçus pour capturer les structures à grande échelle et pour mieux comprendre les mécanismes régissant la dynamique de ces écoulements. La première partie revisite les résultats obtenus sur une couche limite plaque plane en sondant l'origine d'une décroissance spectrale en dans la couche limite turbulente. Dans cette perspective, un modèle simpliste basé sur le modèle de Townsend-Perry est proposé. Ce modèle peut, en principe, être appliqué à n'importe quel écoulement turbulent de paroi. La deuxième partie se concentre sur l'amélioration de la compréhension de la turbulence en gradient de pression adverse en effectuant une caractérisation complète d’un écoulement académique au dessus d’une géométrie. L’accent est mis sur les caractéristiques des structures (longueur, scaling, contribution énergétique et distribution selon la normale à la paroi) ainsi que sur l'influence du gradient de pression adverse sur les structures des grandes échelles. L'analyse permet de comparer le comportement d'une couche limite en présence de gradient de pression adverse avec le cas d’une plaque plane à grands nombres de Reynolds / The aim of the present work is to study a boundary layer subjected to a pressure gradient and to compare it with a zero pressure gradient (ZPG) boundary layer at high Reynolds numbers. Within this framework, focus is laid on the behaviour of large-scale coherent structures. Due to their large streamwise extent, these structures are not easy to extract and characterize using standard measurement techniques. For this reason, specific experimental set-ups using PIV in the streamwise/wall-normal planes was designed to capture the large-scale structures and to gain more insight into the mechanisms governing the dynamics of these flows. The achievements of the present investigation can be divided into two parts. The first part revisits the results obtained on a ZPG turbulent boundary layer by probing the origin of a spectral range in a turbulent boundary layer. To this end, a simple model which can in principle be applied to various wall-bounded turbulent flows is proposed from a new perspective based on the work of Townsend-Perry. The second part focuses on improving the understanding of turbulence under an adverse pressure gradient (APG) by performing a complete flow characterisation of an academic test case on a large scale geometry. Emphasis is laid on the characteristics of the structures (length, scaling, energetic contribution and their wall normal distribution) along with the influence of the APG on the large-scale structures. The analysis is also extended to compare the behaviour of APG with the ZPG case at high Reynolds numbers
|
12 |
Physique et modélisation d’interactions instationnaires onde de choc/couche limite autour de profils d’aile transsoniques par simulation numérique / Physics and modeling of unsteady shock wave/boundary layer interactions over transonic airfoils by numerical simulationGrossi, Fernando 05 May 2014 (has links)
L’interaction onde de choc/couche limite en écoulement transsonique autour de profils aérodynamiques est étudiée numériquement utilisant différentes classes de modélisation de la turbulence. Les approches utilisées sont celles de modèles URANS et de méthodes hybrides RANS-LES. L’emploi d’une correction de compressibilité pour les fermetures à une équation est aussi évalué. Premièrement, la séparation intermittente induite par le choc sur un profil supercritique en conditions d’incidence proches de l’angle critique d’apparition du tremblement est analysée. Suite à des simulations URANS, la modélisation statistique la mieux adaptée est étudiée et utilisée dans l’approche DDES (Delayed Detached-Eddy Simulation). L’étude de la topologie de l’écoulement, des pressions pariétales et champs de vitesse statistiques montrent que les principales caractéristiques de l’oscillation auto-entretenue du choc sont capturées par les simulations. De plus, la DDES prédit des fluctuations secondaires de l’écoulement qui n’apparaissent pas en URANS. L’étude de l’interface instationnaire RANS-LES montre que la DDES évite le MSD (modeled stress depletion) pour les phases de l’écoulement attaché ou séparé. Le problème de la ‘zone grise’ et de son influence sur les résultats est considéré. Les conclusions de l’étude sur le profil supercritique est ensuite appliquées à l’étude numérique d’un profil transsonique laminaire. Dans ce contexte, l’effet de la position de la transition de la couche limite sur les caractéristiques de deux régimes d’interaction choc/couche limite sélectionnés est étudié. En conditions de tremblement, les simulations montrent une forte influence du point de transition sur l’amplitude du mouvement du choc et sur l’instationnarité globale de l’écoulement. / Shock wave/boundary layer interactions arising in the transonic flow over airfoils are studied numerically using different levels of turbulence modeling. The simulations employ standard URANS models suitable for aerodynamics and hybrid RANS-LES methods. The use of a compressibility correction for one-equation closures is also considered. First, the intermittent shock-induced separation occurring over a supercritical airfoil at an angle of attack close to the buffet onset boundary is investigated. After a set of URANS computations, a scale-resolving simulation is performed using the best statistical approach in the context of a Delayed Detached-Eddy Simulation (DDES). The analysis of the flow topology and of the statistical wall-pressure distributions and velocity fields show that the main features of the self-sustained shock-wave oscillation are predicted by the simulations. The DDES also captures secondary flow fluctuations which are not predicted by URANS. An examination of the unsteady RANS-LES interface shows that the DDES successfully prevents modeled-stress depletion whether the flow is attached or separated. The gray area issue and its impact on the results are also addressed. The conclusions from the supercritical airfoil simulations are then applied to the numerical study of a laminar transonic profile. Following a preliminary characterization of the airfoil aerodynamics, the effect of the boundary layer transition location on the properties of two selected shock wave/boundary layer interaction regimes is assessed. In transonic buffet conditions, the simulations indicate a strong dependence of the shock-wave motion amplitude and of the global flow unsteadiness on the tripping location.
|
13 |
Analyse de la modélisation turbulente en écoulements tourbillonnaires / Turbulent modelling analysis on rotating flowsMonier, Jean-François 02 July 2018 (has links)
L'objectif de la présente étude est d'analyser la modélisation de la turbulence de simulations en moyenne de Reynolds (RANS) dans le cadre d'écoulements de type turbomachines, en utilisant des simulations aux grandes échelles (SGE) comme référence. L'étude porte sur deux cas test: un décollement de coin dans une grille d'aubes rectiligne, et un écoulement de jeu pour un aubage isolé dans un jet. Deux lois de comportement, la loi de comportement de Boussinesq et la loi de comportement quadratique (quadratic constitutive relation ou QCR), sont analysées, avec deux versions du modèle de turbulence k-omega de Wilcox. Les lois de comportement étudiées reposent sur deux hypothèses: une hypothèse d'alignement entre le tenseur de Reynolds et un tenseur construit à partir de l'écoulement moyen, et une hypothèse sur la viscosité turbulente. L'hypothèse d'alignement est étudiée à partir de la SGE, pour laquelle les deux tenseurs sont indépendamment connus, en utilisant un indicateur construit sur le produit scalaire des tenseurs. Les résultats sont présentés sous forme d'une fonction de répartition de la valeur de l'indicateur pour le domaine complet, puis pour trois sous-domaines d'intérêt: l'entrée, une région où l'écoulement interagit fortement avec les parois, et une région où l'écoulement est fortement tourbillonnaire. L'hypothèse d'alignement n'est que rarement valide pour la loi de comportement de Boussinesq. Pour la QCR, les résultats sont meilleurs en entrée, comparé à la loi de Boussinesq. Il ne sont cependant pas meilleurs pour les régions où l'écoulement est plus tourbillonnaire. Une amélioration de la loi de comportement est nécessaire pour pouvoir faire progresser la modélisation turbulente en RANS. En revanche, l'utilisation de l'énergie cinétique turbulente et du taux de dissipation spécifique semble correcte pour estimer la valeur de la viscosité turbulente. L'analyse de la modélisation de l'équation d'énergie cinétique turbulente (ECT) est réalisée au travers d'une comparaison terme à terme avec l'équation d'ECT résolue par la SGE. Les résultats SGE présentent une turbulence qui n'est pas à l'équilibre : la production et la dissipation ne sont pas superposées, et le terme de transport est important. Pour le RANS, la turbulence est à l'équilibre : la production et la dissipation sont superposées, et le terme de transport est de faible intensité. Un modèle de turbulence qui prend en compte le déséquilibre est nécessaire pour améliorer ce point. En dernier lieu, une nouvelle formulation hybride RANS/SGE est proposée, fondée sur la distance à la paroi en unités de paroi. La formulation est validée dans un canal bi-périodique et un premier essai est réalisé sur le cas de décollement de coin, mais d'autres analyses sont nécessaires avant que cette formulation ne soit fonctionnelle. / The present study aims at analysing turbulence modelling in Reynolds-averaged Navier-Stokes (RANS) simulations, in the context of turbomachinery flows, using large-eddy simulations (LES) as references. Two test cases are considered: a corner separation (CS) flow in a linear compressor cascade, and a tip-leakage (TL) flow of a single blade in a jet. Two constitutive relations, the Boussinesq constitutive relation and the quadratic constitutive relation (QCR), are investigated, with two versions of Wilcox's $k-\omega$ turbulence model. The studied constitutive relations rely on two hypotheses: an alignment hypothesis between the Reynolds stress tensor and a mean flow tensor, and an hypothesis on the turbulent viscosity. The alignment hypothesis is investigated using LES, where both the tensors are known independently, with an indicator built on the inner product of the tensors. The results are presented as probability density functions of the indicator value for the entire domain first, and then for three specific areas of interest: the inlet area, similar to a boundary-layer flow, an area of strong interaction between the flow and the walls (CS: passage area, TL: tip clearance) and an area of highly vortical flow (CS: separation wake, TL: tip-leakage vortex). The alignment hypothesis is rarely verified in any area for the Boussinesq constitutive relation. For the QCR, the results are improved for the inlet areas compared to the Boussinesq constitutive relation, but no significant improvement is found in the highly vortical regions. An improvement of the constitutive relation is needed in order to improve the RANS turbulence modelling. In contrast, the use of the turbulent kinetic energy and the specific dissipation rate appears quite correct to estimate the turbulent viscosity. The modelling of the RANS turbulent kinetic energy (TKE) budget equation is investigated through a term to term comparison with the resolved LES TKE budget equation. The LES presents a turbulence that is not at equilibrium, with the production and the dissipation not superimposed, and an important amount of transport. This differs from the RANS models, at equilibrium: the production and the dissipation are superimposed, with a small amount of transport. The development of a non-equilibrium turbulence model for RANS simulations could improve this aspect of turbulence modelling. Finally, a new hybrid RANS-LES formulation, based on the wall distance in wall units, is also proposed. It is validated on a bi-periodical channel flow, and a first attempt is made on the corner separation case, but further investigations are still needed for the model to be fully operational.
|
14 |
Modélisation de la turbulence par approches URANS et hybride RANS-LES. Prise en compte des effets de paroi par pondération elliptique.Fadai-Ghotbi, Atabak 27 April 2007 (has links) (PDF)
L'objectif de ce travail est de prendre en compte les instationnarités naturelles à grande échelle dans les écoulements décollés et à un coût plus faible que la LES, tout en s'intéressant à la modélisation des effets de paroi par des modèles statistiques au second ordre. S'inspirant des approches de Durbin, le modèle à pondération elliptique EB-RSM reproduit l'effet non-local de blocage, en résolvant une équation différentielle sur le terme de pression. La limite à deux composantes de la turbulence est bien prédite en canal. Ce modèle est appliqué à la marche descendante, dans une approche URANS. Nous avons montré que les erreurs numériques peuvent être suffisantes pour exciter le mode le plus instable de la couche cisaillée, et aboutir à une solution instationnaire. La solution est stationnaire quand on raffine le maillage, rendant l'URANS peu fiable. Récemment, Schiestel \& Dejoan ont proposé le modèle hybride non-zonal PITM. Le coefficient $C_{\e_2}$ de l'équation de la dissipation devient fonction de la coupure dans le spectre, et la valeur $C_{\e_1}=3/2$ est déduite par ces auteurs. Nous avons donné une formulation plus générale où la valeur de $C_{\e_1}$ est quelconque. Pour offrir un formalisme plus cohérent aux modèles hybrides non-zonaux dans les écoulements de paroi, une approche basée sur un filtrage temporel est proposée. Enfin, l'adaptation du modèle EB-RSM dans un cadre hybride a été réalisée. Les résultats en canal sont encourageants : la transition continue d'un modèle RANS en proche paroi à une LES au centre du canal est mise en évidence. Le transfert d'énergie des échelles modélisées vers celles résolues est bien reproduit quand on raffine le maillage.
|
Page generated in 0.1929 seconds