1 |
Croissance de l'albacore (Thunnus albacares) de l'Océan Indien : de la modélisation statistique à la modélisation bio-énergétique / Growth of Indian Ocean yellowfin tuna (Thunnus albacares) : statistical modelling to bioenergetic modellingDortel, Emmanuelle 11 June 2014 (has links)
Depuis le début des années 1960, la croissance de l'albacore fait l'objet d'une attention particulière tant dans le domaine de la recherche que pour la gestion des pêcheries. Dans l'océan Indien, la gestion du stock d'albacores, sous la juridiction le Commission Thonière de l'Océan Indien (CTOI), souffre de nombreuses incertitudes associées à la courbe de croissance actuellement considérée. En particulier, des lacunes subsistent dans notre connaissance des processus biologiques et écologiques élémentaires régulant la croissance. Leur connaissance est pourtant fondamentale pour comprendre la productivité des stocks et leur capacité de résistance à la pression de pêche et aux changements océanographiques en cours. À travers la modélisation, cette étude se propose d'améliorer les connaissances actuelles sur la croissance de la population d'albacore de l'océan Indien et de renforcer ainsi les avis scientifiques sur l'état du stock. Alors que la plupart des études sur la croissance de l'albacore s'appuient sur une seule source de données, nous avons mis en œuvre un modèle hiérarchique Bayésien qui exploite diverses sources d'informations sur la croissance, i.e. des estimations d'âge obtenues par otolithométrie, des analyses de progressions modales et les taux de croissance individuels issus du marquage-recapture, et intègre explicitement des connaissances d'experts et les incertitudes associées à chaque source de données ainsi qu'au processus de modélisation. En particulier, le modèle de croissance a été couplé un à modèle d'erreurs dans les estimations d'âge par otolithométrie apportant une amélioration significative des estimations d'âge et des paramètres de croissance en résultant et permettant une meilleure évaluation de la fiabilité des estimations. Les courbes de croissances obtenues constituent une avancée majeure dans la représentation du patron de croissance actuellement utilisé dans les évaluations de stock d'albacore. Elles démontrent que l'albacore présente une croissance en phases, caractérisée par une forte accélération en fin de phase juvénile. Cependant, elles n'apportent aucune information sur les mécanismes biologiques et écologiques à l'origine de ces phases de croissance. Afin de mieux comprendre les facteurs impliqués dans l'accélération de la croissance, nous avons mis en œuvre un modèle bio-énergétique s'appuyant sur les principes de la théorie des bilans dynamiques d'énergie (DEB). Deux hypothèses apparaissant comme les plus pertinentes ont été testées : (i) une faible disponibilité alimentaire liée à une forte compétition inter et intra-spécifique chez les jeunes albacores formant des bancs et (ii) un changement dans le régime alimentaire des adultes s'accompagnant de la consommation de proies plus énergétiques. Il apparait que ces deux hypothèses sont susceptibles d'expliquer, au moins partiellement, l'accélération de la croissance. / Since the early 1960s, the growth of yellowfin has been enjoyed a particular attention both in the research field and for fisheries management. In the Indian Ocean, the management of yellowfin stock, under the jurisdiction of the Indian Ocean Tuna Commission (IOTC), suffers from much uncertainty associated with the growth curve currently considered. In particular, there remain gaps in our knowledge of basic biological and ecological processes regulating growth. Their knowledge is however vital for understanding the stocks productivity and their resilience abilities to fishing pressure and oceanographic changes underway.Through modelling, this study aims to improve current knowledge on the growth of yellowfin population of the Indian Ocean and thus strengthen the scientific advice on the stock status. Whilst most studies on yellowfin growth only rely on one data source, we implemented a hierarchical Bayesian model that exploits various information sources on growth, i.e. direct age estimates obtained through otolith readings, analyzes of modal progressions and individual growth rates derived from mark-recapture experiments, and takes explicitely into account the expert knowledge and the errors associated with each dataset and the growth modelling process. In particular, the growth model was coupled with an ageing error model from repeated otolith readings which significantly improves the age estimates as well as the resulting growth estimates and allows a better assessment of the estimates reliability. The growth curves obtained constitute a major improvement of the growth pattern currently used in the yellowfin stock assessment. They demonstrates that yellowfin exhibits a two-stanzas growth, characterized by a sharp acceleration at the end of juvenile stage. However, they do not provide information on the biological and ecological mechanisms that lie behind the growth acceleration.For a better understanding of factors involved in the acceleration of growth, we implemented a bioenergetic model relying on the principles of Dynamic Energy Budget theory (DEB). Two major assumptions were investigated : (i) a low food availability during juvenile stage in relation with high intra and inter-specific competition and (ii) changes in food diet characterized by the consumption of more energetic prey in older yellowfin. It appears that these two assumption may partially explain the growth acceleration.
|
2 |
Approche bayésienne de la reconstruction des paléoclimats à partir du pollen : Vers la modélisation des mécanismes écologiquesGarreta, Vincent 29 April 2010 (has links) (PDF)
Le pollen conservé dans les sédiments lacustres constitue un indicateur essentiel pour reconstruire l'évolution de la végétation et du climat passés sur les continents. Actuellement, les reconstructions climatiques se basent sur des modèles statistiques décrivant le lien climat-pollen. Ces modèles posent des problèmes méthodologiques car ils sont tous basés sur l'hypothèse que la relation pollen-climat est constante au cours du temps, impliquant que les paramètres non climatiques déterminant cette relation aient une influence faible. Cela est contredit par les développements récents en écologie et en écophysiologie. C'est pourquoi, dans ce travail, nous développons une approche intégrant un modèle dynamique de végétation et les processus majeurs liant la végétation au pollen capté par les lacs. Le cadre bayésien fournit une base théorique ainsi que les outils pour inférer les paramètres des modèles et le climat passé. Nous utilisons ces nouveaux modèles pour reconstruire le climat de l'Holocène en différents sites européens. Cette approche qui permettra des reconstructions spatio-temporelles requiert encore des développements autour de l'inférence de modèles semi-mécanistes.
|
3 |
Aide à la décision pour la conservation des populations de saumon atlantique (Salmo salar L.) / Decision making for the conservation of atlantic salmon populations (Salmo salar L.)Brun, Mélanie 16 December 2011 (has links)
La gestion durable des ressources naturelles vivantes est un problème majeur dans un contexte de raréfaction, dû à l'impact de l'homme et à une incertitude omniprésente. Améliorer les outils existant et en développer de nouveaux pour conseiller les gestionnaires sur l'évolution potentielle des ressources naturelles vivantes, selon divers scénarios environnementaux et de gestion, est nécessaire. Cette thèse a pour but de contribuer au développement d'une méthodologie pour l'aide à la décision pour la gestion des ressources naturelles vivantes, tout en prenant en compte les sources d'incertitude majeures. Ce travail est appliqué au cas de la population de saumon atlantique (Salmo salar L.) de la Nivelle (France). Cette population fait l'objet d'un programme de suivi à long terme et cette espèce a été largement étudiée. Cette dernière est menacée mais elle est toujours ciblée par la pêche commerciale et récréative. Elle illustre la dualité entre conservation et exploitation, qui est au coeur de la gestion des ressources naturelles vivantes. Pour gérer une population, il est nécessaire de comprendre sa dynamique et de prédire son évolution sous divers scénarios environnementaux et de gestion. L'approche Bayésienne fournit un cadre cohérent pour quantifier l'incertitude sous ses différentes formes. Les modèles hiérarchiques permettent l'assimilation de sources de données multiples et de faire des inférences et des prédictions sur des grandeurs spatio-temporelles inconnues. Un modèle stochastique d'état Bayésien, i.e. un modèle hiérarchique Bayésien dynamique, est construit pour étudier la dynamique de la population d'intérêt et pour prédire son évolution. La théorie de la décision en univers incertain fournit un cadre pour aider un individu dans ses choix, mais son application reste difficile. En théorie, une fonction d'utilité qui dépend des conséquences des alternatives de gestion reflète les préférences d'un individu unique impliqué dans un problème décisionnel. En pratique, sa construction est malaisée. Premièrement, il estdifficile de définir une valeur pour chaque conséquence. Deuxièmement, il y a généralement plus d'un individu impliqué dans le problème décisionnel. Par conséquent, on obtient une classe de fonctions d'utilité. De par les différents intérêts, souvent conflictuels, que les gestionnaires ont à prendre en compte, la fonction d'utilité est multi variée. Dans cette thèse, une classe de fonctions d'utilité bi-variées est construite. Elle prend en compte l'incertitude concernant la fonction, les variations de préférence entre les acteurs et la dualité d'intérêts exploitation vs conservation. Ensuite, une analyse de la robustesse est réalisée pour étudier si la décision optimale, i.e. l'utilité espérée maximale, varie lorsque la fonction d'utilité varie.La méthodologie développée dans cette thèse s'est avérée possible et fructueuse. Elle fournit un cadre cohérent pour organiser les interactions entre scientifiques, acteurs et gestionnaires pour atteindre une compréhension commune des problèmes de décision dans la gestion des ressources naturelles vivantes. En reconnaissant explicitement la diversité des acteurs, elle permet d'identifier des conflits potentiels et de guider les gestionnaires vers des compromis acceptables. Cependant, elle demande un haut niveau de formation et d'expertise en modélisation et en calcul. Elle implique également un temps d'analyse important. Comment rendre ces exigences compatibles avec le niveau actuel d'expertise et les agendas à court terme des structures de gestion est un challenge principal pour le futur. / The sustainable management of natural living resources is a major issue in a context of increasing scarcity due to human impact and of pervasive uncertainty. Improving existing tools and developing new ones to advise decision makers on the potential evolution of natural living resources, according to various management and environmental scenarios, is requested. This PhD aims at contributing to the development of a methodology for decision making for natural living resources management, while taking into account major sources of uncertainty. This is achieved through the study case of the Atlantic salmon (Salmo salar L.) population ofthe Nivelle River (France). This population is subjected to a long term monitoring program and the species has been extensively studied. Atlantic salmon is a threatened species but still targeted by commercial and recreational fisheries. It illustrates the duality between conservation and exploitation which is at the heart of natural living resource management. To manage a population, it is necessary to understand its dynamics and to predict its evolution under various management and environmental scenarios. The Bayesian approach provides a coherent framework to quantify uncertainty in its different forms. Hierarchical models allow the assimilation of multiple sources of data and to make spatio-temporal inferences and predictions. A Bayesian state space model, i.e. a Bayesian dynamic hierarchical model, is constructed to study the dynamics of the population of interest and topredict its evolution. The decision theory under uncertainty provides a framework to help an individual in its choices, but its application still raises difficulties. In theory, a utility function depending on the consequences of alternative actions reflects the preferences of a single individual involved in a decision problem. In practice, its construction is challenging. Firstly, it is difficult to assign a value for each consequence. Secondly, there is usually more than one individual involved in the decision problem. Consequently, we obtain a set of utility functions. Due to the various and often conflicting interests the decision maker has to take into account, the utility function is multivariate. In this PhD, a set of bivariate utility functions is constructed. It accounts for the uncertainty about the function, the variation of preferences among stakeholders and the dual interests of exploitation vs conservation. Next, a robustness analysis is performed to study if the optimal decision, i.e. associated to the maximum expected utility, varies when the utility function varies. The methodology developed in this PhD proved practicable and fruitful. It provides a coherent framework for organizing the interactions between scientists, stakeholders and decision makers for reaching a common understanding of decision problems in the management of natural living resources. By acknowledging explicitly the diversity among stakeholders, it allows to identify potential conflict and it helps guiding decision makers towards acceptable trade-off actions. However, it requires a high level of training and expertise in modelling and computation. It involves also thoughtful and time consuming analyses. How to render these requirements compatible with the current level of expertise and the short term agendas of management bodies is a main challenge for the near future.
|
Page generated in 0.1592 seconds