• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 34
  • 31
  • 8
  • 1
  • Tagged with
  • 74
  • 58
  • 39
  • 37
  • 32
  • 24
  • 22
  • 22
  • 20
  • 18
  • 18
  • 18
  • 15
  • 15
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Visualisierung von Klassenbestandteilen am Beispiel der Stadtmetapher

Schulze, Christian 31 July 2017 (has links)
Die Stadtmetapher des Softwarevisualisierungsgenerators der Forschungsgruppe Softwarevisualisierung in 3D und virtueller Realität soll um zwei Varianten der Darstellung von Klassenattributen und -methoden erweitert werden. Nach Evaluation bereits existierender Stadtmetaphern mit dem Fokus auf die Anwendbarkeit verschiedener visualisierter Aspekte auf die Stadtmetapher des Softwarevisualisierungsgenerators folgt eine Definition der zu implementierenden Varianten zur Darstellung der Klassenbestandteile. Als Basis einer der umzusetzenden Varianten dient dabei der Ansatz von CodeCity, der die Zerlegung des Gebäudes in sogenannte Bricks vorsieht. Eine zweite Variante der Visualisierung soll das Gebäude ebenfalls in Segmente gliedern, jedoch konsequent aufeinander stapeln. Zusätzlich werden Zugriffsmodifikatoren beziehungsweise Methodentypen farblich verschieden gekennzeichnet sowie eine Sortierung der Elemente nach mehreren Kriterien vorgenommen.:Gliederung (I) Abbildungsverzeichnis (III) Tabellenverzeichnis (V) Verzeichnis der Listings (VI) Abkürzungsverzeichnis (VII) 1 Einleitung (1) 1.1 Motivation und Problemstellung (1) 1.2 Zielstellung der Arbeit (1) 1.3 Methodisches Vorgehen (2) 1.4 Aufbau der Arbeit (2) 2 Darstellungen von Klassenbestandteilen (3) 2.1 Softwarevisualisierung (3) 2.2 Die Stadtmetapher (5) 2.3 Methoden als Gebäude (6) 2.3.1 ImSoVision (6) 2.3.2 Vizz3d - Unified City (7) 2.3.3 Software World (9) 2.4 Klassen als Gebäude (15) 2.4.1 EvoSpaces / Software City (15) 2.4.2 SArF Map (17) 2.4.3 Verso (18) 2.5 Gebäude als ambivalente Glyphe (20) 2.5.1 CodeMetropolis (20) 2.5.2 CodeCity (22) 3 Erweiterung des Softwarevisualisierungsgenerators (24) 3.1 Der Softwarevisualisierungsgenerator (24) 3.2 Anforderungsanalyse der Teilelemente (25) 3.3 Erweiterung des Metamodells (26) 3.4 Modell-Transformationen und Modifikationen (28) 3.4.1 Modell-zu-Modell-Transformation der Backsteine (28) 3.4.2 Modell-zu-Modell-Transformation der Paneele (30) 3.4.3 Modellmodifikationen (31) 3.4.4 Modell-zu Text-Transformation (36) 3.5 Evaluation der Varianten (38) 4 Zusammenfassung und Ausblick (42) Anhang – Erläuterungen zur Konfiguration und Ausführung (VIII) Literatur- und Quellenverzeichnis (XI) Selbstständigkeitserklärung (XV)
32

Analyse, Erzeugung und Evaluation animierter Softwarevisualisierungen

Schilbach, Jan 05 February 2018 (has links)
Animationen bieten verschiedene Möglichkeiten, um Sachverhalte in der Softwarevisualisierung darzustellen. Die vielfältigen Ausprägungen von Animationen können eingesetzt werden, um die verschiedenen Hauptaspekte von Software, Struktur, Verhalten und Historie, zu visualisieren. Um ihren Einsatz für die Zwecke der Softwarevisualisierung zu optimieren, ist es aber essenziell, die verschiedenen möglichen Formen, deren Einsatzzwecke und ihre Eigenschaften im Bezug auf die Wahrnehmung von Menschen zu untersuchen. Die vorliegende Arbeit untersucht diese Aspekte und bedient sich dabei verschiedener Forschungsmethoden. Zu diesen Forschungsmethoden gehören eine Literaturstudie, die prototypische Implementierung von Werkzeugen und ein Experiment. Die Literaturstudie zeigt den aktuellen Stand der Forschung im Bezug auf die Verwendung und den Einsatzzweck von Animationen im Bereich der Softwarevisualisierung. Die prototypische Implementierung von Werkzeugen wird genutzt, um verschiedene Phasen des Visualisierungsprozesses zu unterstützen. So werden Techniken dargestellt, die es ermöglichen, Informationen über die Struktur, das Verhalten und die Historie von Ruby-Programmen zu gewinnen und diese in geeigneter Weise bereitzustellen. Des Weiteren wird ein Framework vorgestellt, mit dem es möglich ist, durch deklarative Angabe von Ereignissen, verschiedene Arten von Animationen in X3D- und X3DOM-Szenen auszulösen. Um die Visualisierungen zu erzeugen, stellt die Arbeit die Erweiterung eines Generators für Softwarevisualisierungen vor. Diese Erweiterung ermöglicht es, aus den extrahierten Informationen animierte Softwarevisualisierungen für alle drei Hauptaspekte von Software zu erzeugen. Im Rahmen der vorliegenden Arbeit wird ein Experiment zur Untersuchung der Effektivität und Effizienz von Animationen in Softwarevisualisierungen durchgeführt. Um die Durchführung dieses und anderer Experimente im Bereich der Softwarevisualisierung zu erleichtern, werden verschiedene Methoden und Hilfsmittel vorgestellt. Dazu gehört auch ein prototypisch im Rahmen der Arbeit implementierter Evaluationsserver, der Versuchsleiter für vergleichende Visualisierungsexperimente in den Bereichen Planung, Durchführung und Auswertung unterstützen kann. Dieser kommt im Rahmen der vorliegenden Arbeit bei der Durchführung eines Experiments zum Einsatz, das für die Aspekte Struktur, Verhalten und Historie jeweils eine statische mit einer animierten Softwarevisualisierung hinsichtlich der Aspekte Fehlerrate, Zeitbedarf zur Beantwortung von Fragen und von den Probanden durchgeführte Interaktion vergleicht.
33

CORFU - An Extended Model-Driven Framework for Small Satellite Software with Code Feedback / CORFU - Ein erweitertes modellgetriebenes Framework für Satellitensoftware mit Code-Rückinformation

Flederer, Frank January 2021 (has links) (PDF)
Corfu is a framework for satellite software, not only for the onboard part but also for the ground. Developing software with Corfu follows an iterative model-driven approach. The basis of the process is an engineering model. Engineers formally describe the basic structure of the onboard software in configuration files, which build the engineering model. In the first step, Corfu verifies the model at different levels. Not only syntactically and semantically but also on a higher level such as the scheduling. Based on the model, Corfu generates a software scaffold, which follows an application-centric approach. Software images onboard consist of a list of applications connected through communication channels called topics. Corfu’s generic and generated code covers this fundamental communication, telecommand, and telemetry handling. All users have to do is inheriting from a generated class and implement the behavior in overridden methods. For each application, the generator creates an abstract class with pure virtual methods. Those methods are callback functions, e.g., for handling telecommands or executing code in threads. However, from the model, one can not foresee the software implementation by users. Therefore, as an innovation compared to other frameworks, Corfu introduces feedback from the user code back to the model. In this way, we extend the engineering model with information about functions/methods, their invocations, their stack usage, and information about events and telemetry emission. Indeed, it would be possible to add further information extraction for additional use cases. We extract the information in two ways: assembly and source code analysis. The assembly analysis collects information about the stack usage of functions and methods. On the one side, Corfu uses the gathered information to accomplished additional verification steps, e.g., checking if stack usages exceed stack sizes of threads. On the other side, we use the gathered information to improve the performance of onboard software. In a use case, we show how the compiled binary and bandwidth towards the ground is reducible by exploiting source code information at run-time. / Corfu ist ein Framework für Satelliten-Software für beide Seiten: Space und Boden. Mit Corfu folgt die Softwareentwicklung einem iterativen modellgetriebenen Ansatz. Grundlage der Software-Entwicklung ist ein technisches Modell, das formell die grundlegende Struktur der Onboard-Software beschreibt. EntwicklerInnen beschreiben dieses Modell in Konfigurationsdateien, die von Corfu in verschiedenen Aspekten automatisch verifiziert werden, z.B. im Bereich des Scheduling. Anhand des definierten Modells erstellt Corfu ein Quellcode-Gerüst. Die Onboard-Software ist in einzelne Applikationen aufgeteilt, die durch Kommunikationskanäle miteinander kommunizieren (Topics genannt). Generischer Code und der generierte Code implementieren bereits die Behandlung und Verwaltung der Topic-Kommunikation, Telekommandos, Telemetrie und Threads. Der generierte Code definiert pur-virtuelle Callback-Methoden, die BenutzerInnen in erbenden Klassen implementieren. Das vordefinierte Modell kann allerdings nicht alle Implementierungsdetails der BenutzerInnen enthalten. Daher führt Corfu als Neuerung ein Code-Feedback ein. Hierbei werden anhand von statischer Analyse Informationen aus dem BenutzerInnen-Quellcode extrahiert und in einem zusätzlichen Modell gespeichert. Dieses extrahierte Modell enthält u.a. Informationen zu Funktionsaufrufen, Anomalien, Events und Stackspeicherverbrauch von Funktionen. Corfu extrahiert diese Informationen durch Quellcode- und Assembler-Analyse. Das extrahierte Modell erweitert das vordefinierte Modell, da es Elemente aus dem vordefinierten Modell referenziert. Auf der einen Seite nutzt Corfu die gesammelten Informationen, um weitere Verifikationsschritte durchführen zu können, z.B. Überprüfen der Stack-Größen von Threads. Auf der anderen Seite kann die Nutzung von Quellcode-Informationen auch die Leistung verbessern. In einem Anwendungsfall zeigen wir, wie die Größe des kompilierten Programms sowie die genutzte Bandbreite für die Übertragung von Log-Event-Nachrichten durch das erweiterte Modell verringert werden kann.
34

Generative und modellgetriebene Softwarevisualisierung am Beispiel der Stadtmetapher

Zilch, Denise 03 February 2015 (has links)
Für den Visualisierungsgenerator der Forschungsgruppe „Softwarevisualisierung in drei Dimensionen und virtueller Realität“ soll eine Stadtmetapher zur Darstellung von Software implementiert werden. Als Vorlage dient „CodeCity“, dessen Umsetzung der Stadtmetapher auf den Generator übertragen werden soll. Die Anforderungsermittlung basiert auf der Analyse beider Bestandteile, um ein strukturiertes Vorgehen zu gewährleisten. Die Implementierung der Generatorartefakte erfolgt mittels Xtext zur Erstellung eines Metamodells, das die Entitäten der neuen Metapher beschreibt, und Xtend, das genutzt wird um die Datenmodelle zu modifizieren und in Quelltext umzuwandeln. Darauf aufbauend folgt abschließend die Abstraktion zu einem Prozessmodell für die generative und modellgetriebene Softwarevisualisierung, das als Leitfaden für zukünftige Implementierungen dienen soll.:Gliederung Abbildungsverzeichnis Tabellenverzeichnis Verzeichnis der Listings Abkürzungsverzeichnis 1 Einleitung 1.1 Motivation und Problemstellung 1.2 Zielstellung der Arbeit 1.3 Aufbau der Arbeit 2 Grundlagen des Visualisierungsgenerator 2.1 Generative und modellgetriebene Softwareentwicklung 2.2 FAMIX 2.3 Xtext und Xtend 2.4 X3D 3 Implementierung des Prototyps 3.1 Analyse der Zielmetapher 3.1.1 Grundlagen von „CodeCity“ 3.1.2 Anforderungen 3.1.3 Analyseergebnisse 3.2 Auswahl und Analyse der Referenzmetapher 3.2.1 Grundlagen der Referenzmetapher 3.2.2 Erweiterung der Anforderungen 3.3 Das Metamodell 3.4 Der Workflow 3.5 Modell-zu-Modell-Transformation 3.6 Modellmodifikation 3.7 Modell-zu-Text-Transformation 3.8 Anpassungen und Ergänzungen 4 Abstrahiertes Prozessmodell 5 Zusammenfassung und Ausblick Anhang A – Metamodell Recursive Disk-Metapher Anhang B – Hilfestellung für Eclipse-Konfigurationen Anhang C – Konzepte zur Durchführung der Modellmodifikation Anhang D – Entwicklungsstadien der Stadtmetapher Quellen- und Literaturverzeichnis Ehrenwörtliche Erklärung
35

Traceability and model management with executable and dynamic hierarchical megamodels

Seibel, Andreas January 2012 (has links)
Nowadays, model-driven engineering (MDE) promises to ease software development by decreasing the inherent complexity of classical software development. In order to deliver on this promise, MDE increases the level of abstraction and automation, through a consideration of domain-specific models (DSMs) and model operations (e.g. model transformations or code generations). DSMs conform to domain-specific modeling languages (DSMLs), which increase the level of abstraction, and model operations are first-class entities of software development because they increase the level of automation. Nevertheless, MDE has to deal with at least two new dimensions of complexity, which are basically caused by the increased linguistic and technological heterogeneity. The first dimension of complexity is setting up an MDE environment, an activity comprised of the implementation or selection of DSMLs and model operations. Setting up an MDE environment is both time-consuming and error-prone because of the implementation or adaptation of model operations. The second dimension of complexity is concerned with applying MDE for actual software development. Applying MDE is challenging because a collection of DSMs, which conform to potentially heterogeneous DSMLs, are required to completely specify a complex software system. A single DSML can only be used to describe a specific aspect of a software system at a certain level of abstraction and from a certain perspective. Additionally, DSMs are usually not independent but instead have inherent interdependencies, reflecting (partial) similar aspects of a software system at different levels of abstraction or from different perspectives. A subset of these dependencies are applications of various model operations, which are necessary to keep the degree of automation high. This becomes even worse when addressing the first dimension of complexity. Due to continuous changes, all kinds of dependencies, including the applications of model operations, must also be managed continuously. This comprises maintaining the existence of these dependencies and the appropriate (re-)application of model operations. The contribution of this thesis is an approach that combines traceability and model management to address the aforementioned challenges of configuring and applying MDE for software development. The approach is considered as a traceability approach because it supports capturing and automatically maintaining dependencies between DSMs. The approach is considered as a model management approach because it supports managing the automated (re-)application of heterogeneous model operations. In addition, the approach is considered as a comprehensive model management. Since the decomposition of model operations is encouraged to alleviate the first dimension of complexity, the subsequent composition of model operations is required to counteract their fragmentation. A significant portion of this thesis concerns itself with providing a method for the specification of decoupled yet still highly cohesive complex compositions of heterogeneous model operations. The approach supports two different kinds of compositions - data-flow compositions and context compositions. Data-flow composition is used to define a network of heterogeneous model operations coupled by sharing input and output DSMs alone. Context composition is related to a concept used in declarative model transformation approaches to compose individual model transformation rules (units) at any level of detail. In this thesis, context composition provides the ability to use a collection of dependencies as context for the composition of other dependencies, including model operations. In addition, the actual implementation of model operations, which are going to be composed, do not need to implement any composition concerns. The approach is realized by means of a formalism called an executable and dynamic hierarchical megamodel, based on the original idea of megamodels. This formalism supports specifying compositions of dependencies (traceability and model operations). On top of this formalism, traceability is realized by means of a localization concept, and model management by means of an execution concept. / Die modellgetriebene Softwareentwicklung (MDE) verspricht heutzutage, durch das Verringern der inhärenten Komplexität der klassischen Softwareentwicklung, das Entwickeln von Software zu vereinfachen. Um dies zu erreichen, erhöht MDE das Abstraktions- und Automationsniveau durch die Einbindung domänenspezifischer Modelle (DSMs) und Modelloperationen (z.B. Modelltransformationen oder Codegenerierungen). DSMs sind konform zu domänenspezifischen Modellierungssprachen (DSMLs), die dazu dienen das Abstraktionsniveau der Softwareentwicklung zu erhöhen. Modelloperationen sind essentiell für die Softwareentwicklung da diese den Grad der Automatisierung erhöhen. Dennoch muss MDE mit Komplexitätsdimensionen umgehen die sich grundsätzlich aus der erhöhten sprachlichen und technologischen Heterogenität ergeben. Die erste Komplexitätsdimension ist das Konfigurieren einer Umgebung für MDE. Diese Aktivität setzt sich aus der Implementierung und Selektion von DSMLs sowie Modelloperationen zusammen. Eine solche Aktivität ist gerade durch die Implementierung und Anpassung von Modelloperationen zeitintensiv sowie fehleranfällig. Die zweite Komplexitätsdimension hängt mit der Anwendung von MDE für die eigentliche Softwareentwicklung zusammen. Das Anwenden von MDE ist eine Herausforderung weil eine Menge von heterogenen DSMs, die unterschiedlichen DSMLs unterliegen, erforderlich sind um ein komplexes Softwaresystem zu spezifizieren. Individuelle DSMLs werden verwendet um spezifische Aspekte eines Softwaresystems auf bestimmten Abstraktionsniveaus und aus bestimmten Perspektiven zu beschreiben. Hinzu kommt, dass DSMs sowie DSMLs grundsätzlich nicht unabhängig sind, sondern inhärente Abhängigkeiten besitzen. Diese Abhängigkeiten reflektieren äquivalente Aspekte eines Softwaresystems. Eine Teilmenge dieser Abhängigkeiten reflektieren Anwendungen diverser Modelloperationen, die notwendig sind um den Grad der Automatisierung hoch zu halten. Dies wird erschwert wenn man die erste Komplexitätsdimension hinzuzieht. Aufgrund kontinuierlicher Änderungen der DSMs, müssen alle Arten von Abhängigkeiten, inklusive die Anwendung von Modelloperationen, kontinuierlich verwaltet werden. Dies beinhaltet die Wartung dieser Abhängigkeiten und das sachgerechte (wiederholte) Anwenden von Modelloperationen. Der Beitrag dieser Arbeit ist ein Ansatz, der die Bereiche Traceability und Model Management vereint. Das Erfassen und die automatische Verwaltung von Abhängigkeiten zwischen DSMs unterstützt Traceability, während das (automatische) wiederholte Anwenden von heterogenen Modelloperationen Model Management ermöglicht. Dadurch werden die zuvor erwähnten Herausforderungen der Konfiguration und Anwendung von MDE überwunden. Die negativen Auswirkungen der ersten Komplexitätsdimension können gelindert werden indem Modelloperationen in atomare Einheiten zerlegt werden. Um der implizierten Fragmentierung entgegenzuwirken, erfordert dies allerdings eine nachfolgende Komposition der Modelloperationen. Der Ansatz wird als erweitertes Model Management betrachtet, da ein signifikanter Anteil dieser Arbeit die Kompositionen von heterogenen Modelloperationen behandelt. Unterstützt werden zwei unterschiedliche Arten von Kompositionen. Datenfluss-Kompositionen werden verwendet, um Netzwerke von heterogenen Modelloperationen zu beschreiben, die nur durch das Teilen von Ein- und Ausgabe DSMs komponiert werden. Kontext-Kompositionen bedienen sich eines Konzepts, das von deklarativen Modelltransformationen bekannt ist. Dies ermöglicht die Komposition von unabhängigen Transformationsregeln auf unterschiedlichsten Detailebenen. Die in dieser Arbeit eingeführten Kontext-Kompositionen bieten die Möglichkeit eine Menge von unterschiedlichsten Abhängigkeiten als Kontext für eine Komposition zu verwenden -- unabhängig davon ob diese Abhängigkeit eine Modelloperation repräsentiert. Zusätzlich müssen die Modelloperationen, die komponiert werden, selber keine Kompositionsaspekte implementieren, was deren Wiederverwendbarkeit erhöht. Realisiert wird dieser Ansatz durch einen Formalismus der Executable and Dynamic Hierarchical Megamodel genannt wird und auf der originalen Idee der Megamodelle basiert. Auf Basis dieses Formalismus' sind die Konzepte Traceability (hier Localization) und Model Management (hier Execution) umgesetzt.
36

MDE settings in SAP : a descriptive field study

Hebig, Regina, Giese, Holger January 2012 (has links)
MDE techniques are more and more used in praxis. However, there is currently a lack of detailed reports about how different MDE techniques are integrated into the development and combined with each other. To learn more about such MDE settings, we performed a descriptive and exploratory field study with SAP, which is a worldwide operating company with around 50.000 employees and builds enterprise software applications. This technical report describes insights we got during this study. For example, we identified that MDE settings are subject to evolution. Finally, this report outlines directions for future research to provide practical advises for the application of MDE settings. / Techniken der modellgetriebenen Entwicklung (MDE) werden mehr und mehr in der Praxis eingesetzt. Dabei gibt es wenige detaillierte Berichte darüber wie unterschiedliche MDE-Techniken kombiniert und in die Entwicklung integriert werden. Die vorliegende beschreibende Feldstudie dient dem Zweck, in SAP genutzte MDE-Ansätze detailliert zu beschreiben. SAP ist ein weltweit operierendes Unternehmen, hat ca. 50 000 Mitarbeiter und stellt Softwarelösungen für Firmen her. Der vorliegende technische Bericht beschreibt die Einblicke die wir in dieser Studie erhalten haben. Dazu gehört die Einsicht, dass MDE Ansätze einer Evolution unterliegen. Schließlich umreißt dieser Bericht mögliche Richtungen für zukünftige Forschung um praktische Ratschläge für die Gestaltung von MDE Ansätzen geben zu können.
37

Entwicklung eines Editors zum Entwurf von Benutzerschnittstellen für Web Services auf Basis der abstrakten UI-Beschreibungssprache WSGUI

Spillner, Josef 17 August 2007 (has links) (PDF)
Diese Diplomarbeit behandelt das Themengebiet der automatischen Erzeugung von grafischen Benutzeroberflächen (GUIs) im Kontext von Webservices. Es geht dabei konkret um einen Editor, mit dem Hinweise zur Generierung von Dialogen erstellt werden können. Diese Hinweise sollen dann von den dialogerzeugenden Anwendungen einbezogen werden, um eine dynamische Interaktion mit Webservices durch beliebige Nutzer ohne dienstspezifische Software zu ermöglichen. Die Arbeit führt in die aktuellen Techniken zur GUI-Generierung ein und stellt Transformationsprinzipien vor, die eine Generierung ausgehend von einem formalen Datenmodell ermöglichen. Dabei müssen mangelnde Modellparameter in Beschreibungen von Webservices manuell ausgeglichen werden (WSGUI-Konzepte). Diese Zielstellung führt zum Entwurf des WSGUI-Editors. Die anschließende Implementierung berücksichtigt darüber hinaus Integrationsaspekte wie die Publizierung von WSGUI-Hinweisen, Einbindung von GUI-Übersetzungen und eine Vorschau auf die zu generierenden Dialoge. Abgeschlossen wird die Arbeit mit einer Bewertung des Editors, aber auch einer Reihe von Vorschlägen zur Vereinfachung ähnlich gelagerter zukünftiger Projekte im Umfeld von Webservices.
38

Modell-basierte Verifikation von vernetzten mechatronischen Systemen

Hirsch, Martin January 2008 (has links)
Zugl.: Paderborn, Univ., Diss., 2008
39

Modell-basierte Verifikation von vernetzten mechatronischen Systemen

Hirsch, Martin. Unknown Date (has links) (PDF)
Paderborn, Universiẗat, Diss., 2008.
40

Rahmenwerk zur integrativen Gestaltung von Services: Modellgetriebene Servicebeschreibung

Augenstein, Christoph 03 June 2016 (has links)
Die vorliegende Arbeit befasst sich mit der modellgetriebenen Servicebeschreibung, einem Ansatz zur integrativen Beschreibung bzw. Modellierung von Services. Ausgehend von der Prämisse, dass die Natur von Services nur schwer zu erfassen ist und eine Disziplinen-übergreifende Positiv-Definition nicht erreicht werden kann, soll mit dem Ansatz eine Syn-these bisher vorhandener Modellierungsansätze erfolgen. Das Ziel liegt dabei nicht in einem erneuten Versuch, ein vollständiges Modell zur Beschreibung von Services zu entwickeln, sondern vielmehr vorhandene Perspektiven so zu integrieren, dass ein vollständiges Bild als eine Art Mosaik entsteht. Den Kern der Arbeit bildet das Service Modeling Framework. Als Rahmenwerk umfasst es Anforderungen und Restriktionen für die Arbeit mit unter-schiedlichen Servicemodellen, definiert Methoden zur Integration und bietet Werkzeuge, mit deren Hilfe die darin enthaltenen Konzepte umgesetzt werden. Ziel der Konstruktion des Rahmenwerks ist es Nutzer in die Lage zu versetzen mittels mo-dellgetriebener Verfahren eine Zusammenführung von Modellen zu ermöglichen. Auf Basis einer fachlichen, nicht nur syntaktischen Beschreibung von Beziehungen zwischen Model-len und Modellelementen sollen Zusammenhänge modelliert werden, die einen Informati-onsaustausch zwischen Modellen realisieren. Dadurch werden Abhängigkeiten zwischen Modellen explizit formuliert oder aber die Entwicklung neuer Modelle auf Basis bereits bestehender Modelle vorangetrieben. Der Beitrag dieser Arbeit besteht in der Erarbeitung der notwendigen Konzepte und in der Bereitstellung geeigneter Verfahren sowie Werkzeugen zur Umsetzung. Insbesondere stellt diese Arbeit einen Metamodell-basierten Ansatz zur Verfügung, mit dem Modelle über ein Domänen-neutrales Basismetamodell zueinander in Beziehung gesetzt werden können. Zugehörige Werkzeuge, wie Editoren, zeigen eine prototypische Umsetzbarkeit.

Page generated in 0.0745 seconds