601 |
Humidification-dehumidification desalination process: Performance evaluation and improvement through experimental and numerical methodsKaunga, Damson, Patel, Rajnikant, Mujtaba, Iqbal 25 March 2022 (has links)
Yes / Models’ accuracy and reliability are important factors for designers of the humidification-dehumidification (HDH) desalination systems. A model used for designing the system must consider all important parameters in order to maintain high accuracy over the wide range of fluctuating conditions. The empirical models for HDH systems which are mostly available in literature are simple and easy to develop but also have limited predictive accuracy for extreme conditions because of consideration of only a few of many influential parameters. Usage of these models may lead to an expensive redesign at latter stages in development of the real system. Therefore, the aim of this paper is to propose the mechanistic model of the HDH desalination process with an improved prediction accuracy as an alternative to conventional models. This model is developed by coupling the heat and mass transfer equations at the water–air interface into enthalpy equations. Performances of the proposed model and an empirical model from literature are compared against experimental data obtained from the HDH system, which is also designed in this work. Results show the proposed model has relatively low mean square error (0.4) hence more accurate than the empirical model with mean square error of 7. It was also found that, the recovery ratio attained by the system increases substantially with an increase of the feed water temperature, but decreases with an increase of water-to-air flow ratio. Freshwater productivity increases with an increasing packing's specific area while doubling of dehumidifiers’ surface area improves the recovery ratio by 16%.
|
602 |
Inferring the time-varying transmission rate and effective reproduction number by fitting semi-mechanistic compartmental models to incidence dataForkutza, Gregory January 2024 (has links)
This thesis presents a novel approach to ecological dynamic modeling using non-stochastic compartmental models. Estimating the transmission rate (\(\beta\)) and the effective reproduction number (\(R_t\)) is essential for understanding disease spread and guiding public health interventions. We extend this method to infectious disease models, where the transmission rate varies dynamically due to external factors. Using Simon Wood's partially specified modeling framework, we introduce penalized smoothing to estimate time-varying latent variables within the `R` package `macpan2`. This integration provides an accessible tool for complex estimation problems. The efficacy of our approach is first validated via a simulation study and then demonstrated with real-world datasets on Scarlet Fever, COVID-19, and Measles. We infer the effective reproduction number (\(R_t\)) using the estimated \(\beta\) values, providing further insights into the dynamics of disease transmission. Model fit is compared using the Akaike Information Criterion (AIC), and we evaluate the performance of different smoothing bases derived using the `mgcv` package. Our findings indicate that this methodology can be extended to various ecological and epidemiological contexts, offering a versatile and robust approach to parameter estimation in dynamic models. / Thesis / Master of Science (MSc) / This thesis explores a new way to model how diseases spread using a deterministic mathematical framework. We focus on estimating the changing transmission rate and the effective reproduction number, key factors in understanding and controlling disease outbreaks. Our method, incorporated into the `macpan2` software, uses advanced techniques to estimate these changing rates over time. We first prove the effectiveness of our approach with simulations and then apply it to real data from Scarlet Fever, COVID-19, and Measles. We also compare the model performance. Our results show that this flexible and user-friendly approach is a valuable tool for modelers working on disease dynamics.
|
603 |
Process based knowledge management systems for continuous improvementBarber, Kevin D., Munive-Hernandez, J. Eduardo, Keane, J. January 2006 (has links)
No / This paper presents a practical methodology for developing a process-based knowledge management system (KMS) for supporting continuous improvement (CI) and asset management. An action research methodology was used to develop a KMS to support CI in a manufacturing company. The KMS is evaluated through application in the case study company. This methodology ensures a consistent approach to carrying out all improvement initiatives. The final part of the methodology addresses the construction of an intranet-based knowledge warehouse. This contains several searchable areas such as existing information on assets, new knowledge generated from projects, details of expertise in the business and links to the key business drivers through the corporate intranet. The KMS is shown to support CI initiatives through the utilization of available data already held within the company's management databases (production, quality and maintenance) including consideration of corporate strategic plans. Process models trigger the application of improvement tools and projects in a true CI environment. This methodology acknowledges both tacit and explicit knowledge within the company, and it represents an appropriate environment to promote and develop a true learning organization. The system developed is shown to be flexible and has been implemented in a manufacturing environment. Financial benefits are presented.
|
604 |
Probing linker design in citric acid-ciprofloxacin conjugatesMilner, S.J., Snelling, Anna M., Kerr, Kevin G., Abd-El-Aziz, A., Thomas, G.H., Hubbard, R.E., Routledge, A., Duhme-Klair, A-K. January 2014 (has links)
No / A series of structurally related citric acid-ciprofloxacin conjugates was synthesised to investigate the influence of the linker between citric acid and ciprofloxacin on antibacterial activities. Minimum inhibitory concentrations (MICs) were determined against a panel of reference strains and clinical isolates of bacteria associated with infection in humans and correlated with the DNA gyrase inhibitory activity. The observed trend was rationalised by computational modelling.
|
605 |
Classification images for contrast discriminationMcIlhagga, William H. 03 March 2021 (has links)
Yes / Contrast discrimination measures the smallest difference in contrast (the threshold) needed to successfully tell two stimuli apart. The contrast discrimination threshold typically increases with contrast. However, for low spatial frequency gratings the contrast threshold first increases, but then starts to decrease at contrasts above about 50%. This behaviour was originally observed in contrast discrimination experiments using dark spots as stimuli, suggesting that the contrast discrimination threshold for low spatial frequency gratings may be dominated by responses to the dark parts of the sinusoid. This study measures classification images for contrast discrimination experiments using a 1 cycle per degree sinusoidal grating at contrasts of 0, 25%, 50% and 75%. The classification images obtained clearly show that observers emphasize the darker parts of the sinusoidal grating (i.e. the troughs), and this emphasis increases with contrast. At 75% contrast, observers almost completely ignored the bright parts (peaks) of the sinusoid, and for some observers the emphasis on the troughs is already evident at contrasts as low as 25%. Analysis using a Hammerstein model suggests that the bias towards the dark parts of the stimulus is due to an early nonlinearity, perhaps similar to that proposed by Whittle.
|
606 |
Hybrid modelling of machine tool axis drives.Whalley, R., Ebrahimi, Kambiz M., Abdul-Ameer, A.A. January 2005 (has links)
No / The x-axis dynamics of a milling machine where the workpiece and saddle are mounted on supporting slides is considered. A permanent magnet motor, lead screw, ball nut and bearings are employed as the machine, traverse actuator mechanism. Hybrid, distributed¿lumped parameter methods are used to model the machine tool x-axis drive system. Inclusion of the spatial configuration of the drive generates the incident, travelling and reflected vibration signature of the system. Lead screw interactive torsion and tension loading, which is excited by cutting and input disturbance conditions, is incorporated in the modelling process. Measured and results from simulation exercises are presented in comparative studies enabling the dynamic characteristics of the machine to be identified under, no load and with the application of cyclic, cutting force disturbances. The effect of the lead screw length, cutting speed and hence the load disturbance frequency are examined and the resulting performance accuracy is commented upon.
|
607 |
Monitoring and modelling of the energy consumption in polymer extrusionAbeykoon, Chamil, Kelly, Adrian L., Vera-Sorroche, Javier, Brown, Elaine, Coates, Philip D. January 2014 (has links)
No
|
608 |
Human system modelling in support of manufacturing enterprise design and changeKhalil, Siti Nurhaida January 2012 (has links)
Organisations comprise human and technical systems that typically perform a variety of business, engineering and production roles. Human systems comprise individuals, people groups and teams that work systematically to conceive, implement, develop and manage the purposes of any enterprise in response to customer requirements. Recently attention has been paid to modelling aspects of people working within production systems, with a view to improving: production performance, effective resource allocation and optimum resource management. In the research reported, graphical and computer executable models of people have been conceived and used in support of human systems engineering. The approach taken has been to systematically decompose and represent processes so that elemental production and management activities can be modelled as explicit descriptions of roles that human systems can occupy as role holders. First of all, a preliminary modelling method (MM1) was proposed for modelling human systems in support of engineering enterprise; then MM1 was implemented and tested in a case study company 1. Based on findings of this exploratory research study an improved modelling method (MM2) was conceived and instrumented. Here characterising customer related product dynamic impacts extended MM1 modelling concepts and methods and related work system changes. MM2 was then tested in case study company 2 to observe dynamic behaviours of selected system models derived from actual company knowledge and data. Case study 2 findings enabled MM2 to be further improved leading to MM3. MM3 improvements stem from the incorporation of so-called DPU (Dynamic Producer Unit) concepts, related to the modelling of human and technical resource system components . Case study 4 models a human system for targeted users i.e. production managers etc to facilitate analysis of human configuration and also cost modelling. Modelling approaches MM2, MM3 and also Case Study 4 add to knowledge about ways of facilitating quantitative analysis and comparison between different human system configurations. These new modelling methods allow resource system behaviours to be matched to specific, explicitly defined, process-oriented requirements drawn from manufacturing workplaces currently operating in general engineering, commercial furniture and white goods industry sectors.
|
609 |
Implications of potassium channel heterogeneity for model vestibulo-ocular reflex response fidelityMcGuinness, James January 2014 (has links)
The Vestibulo-Ocular Reflex (VOR) produces compensatory eye movements in response to head and body rotations movements, over a wide range of frequencies and in a variety of dimensions. The individual components of the VOR are separated into parallel pathways, each dealing with rotations or movements in individual planes or axes. The Horizontal VOR (hVOR) compensates for eye movements in the Horizontal plane, and comprises a linear and non-linear pathway. The linear pathway of the hVOR provides fast and accurate compensation for rotations, the response being produced through 3-neuron arc, producing a direct translation of detected head velocity to compensatory eye velocity. However, single neurons involved in the middle stage of this 3-neuron arc cannot account for the wide frequency over which the reflex compensates, and the response is produced through the population response of the Medial Vestibular Nucleus (MVN) neurons involved. Population Heterogeneity likely plays a role in the production of high fidelity population response, especially for high frequency rotations. Here we present evidence that, in populations of bio-physical compartmental models of the MVN neurons involved, Heterogeneity across the population, in the form of diverse spontaneous firing rates, improves the response fidelity of the population over Homogeneous populations. Further, we show that the specific intrinsic membrane properties that give rise to this Heterogeneity may be the diversity of certain slow voltage activated Potassium conductances of the neurons. We show that Heterogeneous populations perform significantly better than Homogeneous populations, for a wide range of input amplitudes and frequencies, producing a much higher fidelity response. We propose that variance of Potassium conductances provides a plausible biological means by which Heterogeneity arises, and that the Heterogeneity plays an important functional role in MVN neuron population responses. We discuss our findings in relation to the specific mechanism of Desynchronisation through which the benfits of Heterogeneity may arise, and place those findings in the context of previous work on Heterogeneity both in general neural processing, and the VOR in particular. Interesting findings regarding the emergence of phase leads are also discussed, as well as suggestions for future work, looking further at Heterogeneity of MVN neuron populations.
|
610 |
The mathematical modelling of the transmission dynamics of HIV/AIDS and the impact of antiviral therapiesHajian, Emad January 2000 (has links)
This thesis is concerned with the structure, analysis and numerical solution of the mathematical models used to estimate the transmission dynamics of the Human Immunodeficiency Virus (HIV)) the causative agent of Acquired Immune Deficiency Syndrome (AIDS). Investigations show that the devised deterministic mathematical models in term of system of first-order non-linear ordinary differential equations (ODEs) follow the stochastic nature of the problem at any time. In this thesis a generic form of the deterministic mathematical models is introduced which mirrors the transmission dynamics of HIV/AIDS in populations with different states of affairs, which leads to the division of large-scale and complex mathematical models. When analysing and;or solving a large-scale system of ODEs numerically, the key element in speeding up the process is selecting the maximum possible time step. This work introduces some new techniques used to estimate the maximum possible time step, avoiding the appearance of chaos and divergence in the solution when they are not features of the system. The solution to these mathematical models are presented graphically and numerically, aiming to identify the effect of the anti-HIV therapies and sex education in controlling the disease. The numerical results presented in this thesis indicate that lowering the average number of sexual partners per year is more effective in controlling the disease than the current anti-HIV treatments. For the purpose of this study the mathematical software 'Mathematica 3.0' was used to solve the system of differential equations, modelling HIV/AIDS propagation. This package also provided the graphical detail incorporated in the thesis.
|
Page generated in 0.0948 seconds