1 |
Der Zebrabärbling (Danio rerio) als in vivo Modell zur Untersuchung der Entstehung von Kraniosynostosen / The zebrafish (Danio rerio) as an in vivo model to study the emergence of craniosynostosisBlümel, Rabea January 2021 (has links) (PDF)
Die Entwicklung des Schädeldachs beginnt beim Menschen bereits in der frühen Embryogenese und ist erst im Erwachsenenalter abgeschlossen. Das Wachstum der Schädelknochen muss sich während der Entwicklung fortwährend dem Gehirnwachstum anpassen. An den Stellen, wo zwei Schädelknochen aufeinandertreffen, formen sich Schädelnähte, die aus mesenchymalem Bindegewebe bestehen und als Wachstumsfugen des Schädels dienen. Tritt eine frühzeitige Verknöcherung innerhalb einer oder mehrerer Schädelnähte auf, spricht man von einer Kraniosynostose. Als Konsequenz wird ein weiteres Knochenwachstum verhindert, sodass sich das Neurokranium in dieser Region nicht dem expansiven Wachstum des Gehirns anpassen kann. Dies geht in der Regel mit einem kompensatorischen Wachstum des Schädels und infolgedessen mit kraniofazialen Dysmorphien und einem erhöhten intrakraniellen Druck einher. Klinische Studien und Forschungen an Modellorganismen konnten bereits eine Vielzahl an Genen mit der Entstehung von Kraniosynostosen assoziieren, darunter die Transkriptionsfaktoren TCF12 und TWIST1. Beim Menschen sind heterozygote Mutationen in TCF12 und TWIST1 mit Kraniosynostosen der Koronarnaht assoziiert. Bei Mäusen hingegen führt eine heterozygote Tcf12 Mutation nur in Kombination mit einer heterozygoten Twist1 Mutation zu Fusionen der Koronarnaht.
Der Zebrabärbling (Danio rerio, überwiegend auch Zebrafisch genannt) weist eine bemerkenswerte Ähnlichkeit bezüglich der Anatomie und Morphologie des Schädeldachs zum Menschen auf. Um die genaue Funktion von TCF12 bei der Ausbildung der Schädelnähte zu untersuchen, wurde im Rahmen dieser Arbeit der Zebrafisch als in vivo Modell für die Entstehung tcf12-induzierter Kraniosynostosen etabliert. Zu Beginn der Arbeit wurde das Expressionsmuster von tcf12 über die Entwicklung hinweg analysiert. Ein besonderer Fokus lag dabei auf einem Expressionsnachweis während der Entwicklung der Schädelplatten und der Schädelnähte. Ein erster Expressionsnachweis von tcf12 mittels PCR-Analysen und Whole-mount RNA in-situ Hybridisierungen zeigte eine breite Expression von tcf12 ab dem 1-3 Somiten Stadium an. Für tiefergehende in vivo Analysen wurden im Zuge dieser Arbeit tcf12:EGFP Reportergenlinien generiert. Mit diesen gelang ein Nachweis der tcf12 Expression entlang der Wachstumsfronten der Schädelplatten, innerhalb der Schädelnähte sowie im Periost und der Dura mater.
Mit den tcf12:EGFP Fischen als Referenz wurde in weiterführenden Experimenten die Aktivität drei hochkonservierter CNEs (engl. conserved non-coding elements) in vivo im Zebrafisch untersucht. Zwei der CNEs konnten als tcf12 Enhancer verifiziert werden, die eine Genexpression während der Neurogenese des zentralen Nervensystems (ZNS) steuern. Die beiden Enhancer-Elemente zeichnen sich durch eine hohe Konservierung vom Menschen bis hin zum Zebrafisch aus.
Aufgrund der unterschiedlichen Sensitivität gegenüber einem Funktionsverlust von TCF12 und TWIST1 in Mensch und Maus sollte die Auswirkung eines Knockouts der orthologen Gene auf die Entwicklung der Schädelnähte des Zebrafisches untersucht werden. Mittels CRISPR/Cas9 wurden verschiedene Knockout-Linien für die Gene tcf12, twist1a und twist1b generiert. Analysen der Knockoutmutanten zeigten, dass ein heterozygoter Verlust von tcf12 und twist1b in seltenen Fällen zu partiellen Fusionen der Koronarnähte im Zebrafisch führt. Des Weiteren konnte bei tcf12 und twist1b Einzel- und Doppelmutanten ein abnormes Wachstum der Schädelplatten im Bereich der Suturen beobachtet werden. Die Expressionsstudien und die Analysen der Knockoutmutanten deuten auf eine Regulation von TCF12 bei der Differenzierung der Stammzellen sowie der Proliferation der Osteoblasten innerhalb der Schädelnähte hin.
Um die Auswirkung von TCF12 Mutationen auf funktioneller Ebene zu untersuchen wurden im Verlauf dieser Arbeit Luciferase-Reporter Assays durchgeführt. Anhand dieser konnte nachgewiesen werden, dass Mutationen, die die basic helix-loop-helix (bHLH)-Domäne beeinträchtigen, die Transaktivierungsfähigkeit von TCF12 aufheben. Co-Transfektions-Experimente mit TWIST1 offenbarten eine Regulation der Transaktivierung von TCF12 durch TWIST1, sowohl im Menschen, als auch im Zebrafisch. Im Rahmen dieser Arbeit konnten die genauen Expressionsorte von TCF12 während der Morphogenese des Schädeldachs nachgwiesen und die Funktion von TCF12 und seinem Interaktionspartner TWIST1 bei der Entstehung von Kraniosynostosen weiter aufgeklärt werden. / The morphogenesis of the calvaria is initiated during early embryogenesis and completed during adulthood. The growth of the skull must continuously adapt to the growth of the developing brain. Where two cranial bones meet, fibrous sutures form. The cranial sutures consist of connective tissue and serve as growth sites of the skull. A premature closure (fusion) of one or several of the cranial sutures is a condition called craniosynostosis. Further bone growth in this area is prevented and the neurocranium cannot adapt to the expansive growth of the brain. The result is a compensatory growth of the skull leading to craniofacial dysmorphisms and also, in more severe cases, to an increased intracranial pressure. Clinical studies and research on model organisms have been able to identify a large number of genes involved in suture development and craniosynostosis, including the transcription factors TCF12 and TWIST1. In humans, heterozygous mutations in both, TCF12 and TWIST1, are associated with craniosynostosis. In mice, haploinsufficiency of Tcf12 alone does not lead to coronal suture fusion. Only loss of Twist1 along with loss of Tcf12 results in craniosynostosis of the coronal suture.
Zebrafish (Danio rerio) show a remarkable similarity regarding the anatomy and morphology of the skull vault to that of humans. To unravel the function of tcf12 in cranial suture development, this study aimed to establish a zebrafish in vivo model for tcf12 induced craniosynostosis. First, the expression pattern of tcf12 was analyzed throughout zebrafish development. Special focus was placed on examining the expression of tcf12 during development of the skull plates and the cranial sutures.
PCR-analysis and whole-mount RNA in-situ hybridization revealed a broad tcf12 expression in different tissues beginning from the 1-3-somites stage. For more in-depth in vivo analyses, transgenic tcf12:EGFP reporter lines were generated. During cranial vault development, the transgenic fish showed a high amount of tcf12 expressing cells along the growth fronts of the skull plates, within the cranial sutures as well as in the periosteum and the Dura mater.
In addition, with the tcf12:EGFP fish as a reference, we tested the transcriptional activity of three highly conserved non-coding elements (CNEs) in zebrafish in vivo. We could validate two of the CNEs as tcf12 enhancer elements driving gene expression in the central nervous system during neurogenesis. The two CNEs show a high conservation between humans and zebrafish.
Due to the different sensitivities to loss of TCF12 and TWIST1 in humans and mice, the effect of a gene knockout of the orthologous genes on the development of the sutures should be examined in zebrafish. Therefore, various knockout lines for the genes tcf12, twist1a and twist1b were generated using CRISPR/Cas9. Analyses of the knockout mutants showed that, in a few cases, a heterozygous loss of tcf12 or twist1b led to partial fusions of the coronal sutures in zebrafish. Furthermore, abnormal growth of the skull plates in the area of the sutures could be observed in tcf12 and twist1b single and double knockout mutants. The expression studies and the analyses of the knockout mutants indicate a regulation of TCF12 in the differentiation of stem cells and in the proliferation of osteoblasts within the cranial sutures.
In order to investigate the effects of TCF12 mutations on a functional level, luciferase reporter assays were performed. Based on the reporter assays it was demonstrated that mutations impairing the basic helix-loop-helix (bHLH) domain compromise the transactivation ability of TCF12 remarkably. Co-transfection experiments with TWIST1 revealed regulation of the transactivation of TCF12 by TWIST1, both in humans and in zebrafish.
Within the scope of this work, the exact expression patterns of TCF12 could be demonstrated during the morphogenesis of the cranial vault. Moreover, the function of TCF12 and its interaction partner TWIST1 could be further clarified in the development of craniosynostosis.
|
2 |
Abscheideeffizienz keramischer Tiefenfilter in einem Raumtemperatur-Modellsystem zur Charakterisierung der AluminiumschmelzefiltrationHoppach, Daniel 05 August 2022 (has links)
In dieser Arbeit werden mit einem Raumtemperatur-Modellsystem die Wechselwirkungen und Überlagerungen der verschiedenen Einflussparameter auf die Partikelabscheidung in keramischen Tiefenfiltern dargestellt. Aussagen zum zeitlichen Beladungsverhalten, dem Einfluss der Strukturparameter und der Oberflächenrauheit der Filter auf die Abscheidung werden diskutiert. Außerdem wird die Abscheideeffizienz in Abhängigkeit der Eigenschaften der Verunreinigungen (Größe, Agglomeratzustand, Dichte), sowie dem Vorhandensein von Mikro- oder Nanogasblasen untersucht. Mit Hilfe der Computertomografie können die im Filter abgeschiedenen Verunreinigungen lokal abgebildet werden, was zum Verständnis der in schaumkeramischen Filtern ablaufenden Prozesse bei der Aluminium-Schmelzefiltration beiträgt. Ergebnisse einer dynamischen Bildanalyse lassen Rückschlüsse auf den Fraktionsabscheidegrad der Filter zu.
|
Page generated in 0.082 seconds