• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 138
  • 33
  • 30
  • 19
  • 10
  • 6
  • 4
  • 4
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 283
  • 63
  • 35
  • 34
  • 31
  • 30
  • 26
  • 24
  • 22
  • 22
  • 22
  • 20
  • 20
  • 20
  • 19
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Direct optimization of 3D dose distributions using collimator rotation

Milette, Marie-Pierre 05 1900 (has links)
The primary goal of this thesis is to improve the precision and efficiency of radiation therapy treatment. This goal is achieved by developing and implementing a direct aperture optimization (DAO) platform where the multileaf collimator (MLC) is rotated between each aperture. The approach is referred to as rotating aperture optimization (RAO). A series of tests is performed to evaluate how a final optimized plan depends on MLC parameters. Imposing constraints on the leaf sequence results in increased efficiency and a simplification of the treatment plan without compromising the quality of the dose distribution. It is also shown that an arrangement of equispaced collimator angles takes full advantage of the flexibility associated with collimator rotation. A study including ten recurring nasopharynx cancer patients is used to evaluate the capabilities of RAO compared to other optimization techniques. It is shown that RAO plans require significantly less linac radiation output (monitor units or MU) while maintaining equivalent dose distribution quality compared to plans generated with the conventional fluence based approach. Furthermore with an improved collimator rotation speed, the RAO plans should be executable in the same or less time than plans generated with the fluence-based approach. For the second part of the study it is shown that plans generated with RAO are as good as or better than plans generated with standard fixed collimator DAO. Film and ion chamber measurements indicate that RAO plans can be delivered more accurately than DAO plans. Additional applications of DAO were investigated through collaboration with two PhD students. First, Monte Carlo was used to generate pencil beam dose distributions for DAO inverse treatment planning (MC-DAO). The MC-DAO technique correctly models traditionally difficult treatment geometries such as small fields and tissue inhomogeneities. The MC-DAO also takes advantage of the improved MU efficiency associated with the DAO technique. Secondly DAO is proposed for adaptive radiation therapy. The results show that plan re-adaptation can be performed more quickly than complete plan regeneration thereby minimizing the time the patient has to spend in the treatment room and reducing the potential for geometric errors in treatment delivery.
12

Ultrasound-modulated optical tomography in soft biological tissues

Sakadzic, Sava 17 September 2007 (has links)
Optical imaging of soft biological tissues is highly desirable since it is nonionizing and provides sensitive contrast information which enables detection of physiological functions and abnormalities, including potentially early cancer detection. However, due to the diffusion of light, it is dificult to achieve simultaneously both good spatial resolution and good imaging depth with the pure optical imaging modalities. This work focuses on the ultrasound-modulated optical tomography - a hybrid technique which combines advantages of ultrasonic resolution and optical contrast. In this technique, focused ultrasound and optical radiation of high temporal co-herence are simultaneously applied to soft biological tissue, and the intensity of the ultrasound-modulated light is measured. This provides information about the optical properties of the tissue, spatially localized at the interaction region of the ultrasonic and electromagnetic waves. In experimental part of this work we present a novel implementation of high-resolution ultrasound-modulated optical tomography that, based on optical contrast, can image several millimeters deep into soft biological tissues. A long-cavity confocal Fabry-Perot interferometer was used to detect the ultrasound-modulated coherent light that traversed the scattering biological tissue. Using 15-MHz ultrasound, we imaged with high contrast light absorbing structures placed 3 mm below the surface of chicken breast tissue. The resolution along the axial and the lateral directions with respect to the ultrasound propagation direction was better than 70 and 120¹m, respectively. This technology is complementary to other imaging technologies, such as confocal microscopy and optical-coherence tomography, and has potential for broad biomedical applications. In the theoretical part we present various methods to model interaction be-tween the ultrasonic and electromagnetic waves in optically scattering media. We first extend the existing theoretical model based on the diffusing-wave spectroscopy approach to account for anisotropic optical scattering, Brownian motion, pulsed ul-trasound, and strong correlations between the ultrasound-induced optical phase in-crements. Based on the Bethe-Salpeter equation, we further develop a more general correlation transfer equation, and subsequently a correlation diffusion equation, for ultrasound-modulated multiply scattered light. We expect these equations to be applicable to a wide spectrum of conditions in the ultrasound-modulated optical tomography of soft biological tissues.
13

Direct optimization of 3D dose distributions using collimator rotation

Milette, Marie-Pierre 05 1900 (has links)
The primary goal of this thesis is to improve the precision and efficiency of radiation therapy treatment. This goal is achieved by developing and implementing a direct aperture optimization (DAO) platform where the multileaf collimator (MLC) is rotated between each aperture. The approach is referred to as rotating aperture optimization (RAO). A series of tests is performed to evaluate how a final optimized plan depends on MLC parameters. Imposing constraints on the leaf sequence results in increased efficiency and a simplification of the treatment plan without compromising the quality of the dose distribution. It is also shown that an arrangement of equispaced collimator angles takes full advantage of the flexibility associated with collimator rotation. A study including ten recurring nasopharynx cancer patients is used to evaluate the capabilities of RAO compared to other optimization techniques. It is shown that RAO plans require significantly less linac radiation output (monitor units or MU) while maintaining equivalent dose distribution quality compared to plans generated with the conventional fluence based approach. Furthermore with an improved collimator rotation speed, the RAO plans should be executable in the same or less time than plans generated with the fluence-based approach. For the second part of the study it is shown that plans generated with RAO are as good as or better than plans generated with standard fixed collimator DAO. Film and ion chamber measurements indicate that RAO plans can be delivered more accurately than DAO plans. Additional applications of DAO were investigated through collaboration with two PhD students. First, Monte Carlo was used to generate pencil beam dose distributions for DAO inverse treatment planning (MC-DAO). The MC-DAO technique correctly models traditionally difficult treatment geometries such as small fields and tissue inhomogeneities. The MC-DAO also takes advantage of the improved MU efficiency associated with the DAO technique. Secondly DAO is proposed for adaptive radiation therapy. The results show that plan re-adaptation can be performed more quickly than complete plan regeneration thereby minimizing the time the patient has to spend in the treatment room and reducing the potential for geometric errors in treatment delivery.
14

Reducing Complexity of Liver Cancer Intensity Modulated Radiotherapy

Lee, Mark Tiong Yew 15 February 2010 (has links)
Intensity modulated radiotherapy (IMRT) can potentially increase the dose delivered to liver tumours while sparing normal tissues from dose. More complex IMRT, with more modulation of the radiation beam is more susceptible to geometric and dosimetric uncertainties than simpler radiotherapy plans. Simple breath-hold liver IMRT using few radiation beam segments (<30) was investigated in 27 patients to determine the quality of treatment in terms of tumour dose coverage and normal tissue sparing as compared to index IMRT using >30 segments. In all 27 plans number of segments was reduced to <30 without compromising tumour coverage or normal tissue dose constraints, at the expense of dose conformity. Delivered tumour and normal tissue dose did not differ statistically between IMRT plans when accounting for treatment residual geometric error. This research supports considering the use of simple IMRT for treatment of liver cancer, except when loss of dose conformation is undesirable (i.e. very high doses).
15

Investigations into static multileaf collimator based intensity modulated radiotherapy

Williams, Matthew John, Physics, Faculty of Science, UNSW January 2005 (has links)
Intensity Modulated Radiation Therapy (IMRT) is a modern radiotherapy treatment technique used to obtain highly conformal dose distributions. The delivery of IMRT is commonly achieved through the use of a multileaf collimator (MLC). One of the hindrances at present to the widespread use of IMRT is the increased time required for its planning, delivery and verification. In this thesis one particular method of MLC based IMRT, known as Static Multileaf Collimator based IMRT (SMLC-IMRT), has been studied along with methods for improving it???s delivery efficiency. The properties of an MLC commonly used in SMLC-IMRT have been characterised. The potential ramifications of these properties on the dosimetric accuracy of the delivered IMRT field were also investigated. An Interactive Leaf Sequencing (ILS) program was developed that allowed for the manipulation and processing of intensity maps using a variety of methods. The objective of each method was to improve the delivery efficiency whilst maintaining the dosimetric quality of the IMRT treatment. The different methods investigated were collimator angle optimisation, filtration, and intensity level optimisation. The collimator was optimised by identifying the angle at which the minimum monitor unit???s (MU???s) were required when using a sliding-window delivery method. A Savitzky-Golay filter was applied to random intensity maps and suitable filtration parameters identified for filtering clinical IMRT fields, and the intensity levels were optimised based on a deviation threshold. The deviation threshold identified the acceptable level of difference tolerable between the original and modified intensity map. Several IMRT cases were investigated and the impact of each the methods on MU???s, segments and dose distribution observed. As the complexity of IMRT fields increases the dosimetric impact of the MLC properties increases. Complex SMLC-IMRT fields require longer delivery times due to the increased number of MU???s and segments. Collimator optimisation was shown to be a fast and effective means of improving delivery efficiency with negligible dosimetric change to the optimised plan. Modifying intensity maps by applying a filter and optimising the intensity levels did reduce the complexity and improve the delivery efficiency, but also required a dosimetric compromise of the optimised plan.
16

Comparative treatment planning in radiotherapy and clinical impact of proton relative biological effectiveness /

Johansson, Jonas, January 2006 (has links)
Diss. (sammanfattning) Uppsala : Uppsala universitet, 2006. / Härtill 4 uppsatser.
17

Direct optimization of 3D dose distributions using collimator rotation

Milette, Marie-Pierre 05 1900 (has links)
The primary goal of this thesis is to improve the precision and efficiency of radiation therapy treatment. This goal is achieved by developing and implementing a direct aperture optimization (DAO) platform where the multileaf collimator (MLC) is rotated between each aperture. The approach is referred to as rotating aperture optimization (RAO). A series of tests is performed to evaluate how a final optimized plan depends on MLC parameters. Imposing constraints on the leaf sequence results in increased efficiency and a simplification of the treatment plan without compromising the quality of the dose distribution. It is also shown that an arrangement of equispaced collimator angles takes full advantage of the flexibility associated with collimator rotation. A study including ten recurring nasopharynx cancer patients is used to evaluate the capabilities of RAO compared to other optimization techniques. It is shown that RAO plans require significantly less linac radiation output (monitor units or MU) while maintaining equivalent dose distribution quality compared to plans generated with the conventional fluence based approach. Furthermore with an improved collimator rotation speed, the RAO plans should be executable in the same or less time than plans generated with the fluence-based approach. For the second part of the study it is shown that plans generated with RAO are as good as or better than plans generated with standard fixed collimator DAO. Film and ion chamber measurements indicate that RAO plans can be delivered more accurately than DAO plans. Additional applications of DAO were investigated through collaboration with two PhD students. First, Monte Carlo was used to generate pencil beam dose distributions for DAO inverse treatment planning (MC-DAO). The MC-DAO technique correctly models traditionally difficult treatment geometries such as small fields and tissue inhomogeneities. The MC-DAO also takes advantage of the improved MU efficiency associated with the DAO technique. Secondly DAO is proposed for adaptive radiation therapy. The results show that plan re-adaptation can be performed more quickly than complete plan regeneration thereby minimizing the time the patient has to spend in the treatment room and reducing the potential for geometric errors in treatment delivery. / Science, Faculty of / Physics and Astronomy, Department of / Graduate
18

Time modulated switching and reactive loading techniques applied to a circular array antenna using genetic algorithm optimisation

Hussaini, Abubakar S., Elfergani, Issa T., Abusitta, M.M., Adebola, A.D., Abd-Alhameed, Raed, Ghazaany, Tahereh S., Child, Mark B., Rodriguez, Jonathan January 2013 (has links)
No / Adaptive arrays have the capability to direct or steer the main beam in real time in a desired direction, or towards signal of interest (SOI), whilst suppressing interference or multipath signals. Reactive loading and time modulated switching techniques are applied to steer the beam of a uniform circular six element antenna array having a source element at its centre. Genetic algorithm (GA) optimization is used to calculate optimal values for the reactances loading the parasitic elements, from which the gain can be optimized in a desired direction. For temporal switching, the GA is also used to determine the optimal on and off times for the parasitic elements. This gives the difference in the induced currents, optimies the gain and steers the beam in a desired direction. These methods are demonstrated for a vertically polarised array configuration operating at 2.45GHz. Simulation results show that near optimal solutions for gain, sidelobe level reduction, with VSWR 3 over a 100MHz bandwidth, and beam steering is achievable by the GA optimisation.
19

Neural mapping of binocular and amblyopic suppression

Chima, Akash S. January 2015 (has links)
Inter-ocular suppression occurs when very different images are presented to each eye. Diplopia ensues if different images are superimposed and perceived. The brain removes this unfavourable viewing experience by suppressing one eye’s input to enable clear single vision. Inter-ocular suppression during visual development occurs in response to sufficiently disparate images caused by strabismus (misalignment of the visual axis) or anisometropia (uncorrected difference in refractive error), and if persistent may result in amblyopia. This is reduced visual sensitivity, usually in one eye, to a range of visual functions that cannot be corrected by refraction. Furthermore, binocular vision is reduced or absent. Depth and extent of suppression is measured across the central visual field in healthy participants with monocularly blurred vision, healthy participants with monocularly reduced luminance using neutral density (ND) filters, and participants with naturally disrupted binocular vision and/or amblyopia. Suppression of spatial stimuli defined by luminance (L) and luminancemodulated noise (LM) was compared to that measured for stimuli defined by contrast-modulated noise (CM), for which there is no change in mean luminance. For all stimuli suppression depth increased with increased imbalance of binocular input. Suppression was of a similar depth across the visual field with imposed blur and localised central suppression was found with ND filters. Microstrabismics showed central suppression, while strabismic amblyopes showed central in addition to hemifield suppression. Suppression for all participants was measured to be deeper for CM spatial stimuli than for LM spatial stimuli. This is suggested to be a result of CM stimuli engaging more binocular mechanisms of processing, than LM stimuli, thereby becoming more sensitive to disruptions of binocularity such as those produced in the participants in the present study. CM stimuli are therefore more sensitive to detecting suppression, which is associated with amblyopia.
20

Fluence Field Modulated Computed Tomography

Bartolac, Steven J. 07 January 2014 (has links)
Dose management in CT is an increasingly important issue as the number of CT scans per capita continues to rise. One proposed approach for enhanced dose management is to allow the spatial pattern of x-ray fluence delivered to the patient to change dynamically as the x-ray tube rotates about the patient. The changes in incident fluence could be guided using a patient model and optimization method in order to deliver user-defined image quality criteria while minimizing dose. This approach is referred to as fluence field modulated CT (FFMCT). In this work, a framework and optimization method was developed for evaluating the dose and image quality benefits of FFMCT, both in simulated and experimental data. Modulated fluence profiles were optimized for different objects and image quality criteria using a simulated annealing algorithm. Analysis involved comparing predicted image quality maps and dose outcomes to those using conventional methods. Results indicated that image quality distributions using FFMCT agreed better with prescribed image qualities than conventional techniques allow. Dose reductions ranged depending on the task and object of interest. Simulation studies using a simulated anthropomorphic phantom of the chest suggest an average dose reduction of at least 20% compared to conventional techniques is possible, where local dose reductions may be greater than 60%. Across different imaging tasks and objects, integral dose reductions ranged from 20-50% when compared to a conventional bowtie filter. The results of this study suggest that given a suitable collimator approach, FFMCT could reap significant benefits in terms of reducing dose and optimizing image quality. Though the tradeoff between image quality and imaging dose may not be eliminated, it may be better managed using an FFMCT approach.

Page generated in 0.0693 seconds