• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Throughput Constrained and Area Optimized Dataflow Synthesis for FPGAs

Sun, Hua 21 February 2008 (has links) (PDF)
Although high-level synthesis has been researched for many years, synthesizing minimum hardware implementations under a throughput constraint for computationally intensive algorithms remains a challenge. In this thesis, three important techniques are studied carefully and applied in an integrated way to meet this challenging synthesis requirement. The first is pipeline scheduling, which generates a pipelined schedule that meets the throughput requirement. The second is module selection, which decides the most appropriate circuit module for each operation. The third is resource sharing, which reuses a circuit module by sharing it between multiple operations. This work shows that combining module selection and resource sharing while performing pipeline scheduling can significantly reduce the hardware area, by either using slower, more area-efficient circuit modules or by time-multiplexing faster, larger circuit modules, while meeting the throughput constraint. The results of this work show that the combined approach can generate on average 43% smaller hardware than possible when a single technique (resource sharing or module selection) is applied. There are four major contributions of this work. First, given a fixed throughput constraint, it explores all feasible frequency and data introduction interval design points that meet this throughput constraint. This enlarged pipelining design space exploration results in superior hardware architectures than previous pipeline synthesis work because of the larger sapce. Second, the module selection algorithm in this work considers different module architectures, as well as different pipelining options for each architecture. This not only addresses the unique architecture of most FPGA circuit modules, it also performs retiming at the high-level synthesis level. Third, this work proposes a novel approach that integrates the three inter-related synthesis techniques of pipeline scheduling, module selection and resource sharing. To the author's best knowledge, this is the first attempt to do this. The integrated approach is able to identify more efficient hardware implementations than when only one or two of the three techniques are applied. Fourth, this work proposes and implements several algorithms that explore the combined pipeline scheduling, module selection and resource sharing design space, and identifies the most efficient hardware architecture under the synthesis constraint. These algorithms explore the combined design space in different ways which represents the trade off between algorithm execution time and the size of the explored design space.
2

Development of Bi-Directional Module using Wafer-Bonded Chips

Kim, Woochan 06 January 2015 (has links)
Double-sided module exhibits electrical and thermal characteristics that are superior to wire-bonded counterpart. Such structure, however, induces more than twice the thermo-mechanical stress in a single-layer structure. Compressive posts have been developed and integrated into the double-sided module to reduce the stress to a level acceptable by silicon dice. For a 14 mm x 21 mm module carrying 6.6 mm x 6.6 mm die, finite-element simulation suggested an optimal design having four posts located 1 mm from the die; the z-direction stress at the chip was reduced from 17 MPa to 0.6 MPa. / Ph. D.

Page generated in 0.1434 seconds