• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 358
  • 109
  • 49
  • 24
  • 19
  • 19
  • 19
  • 19
  • 19
  • 19
  • 9
  • 9
  • 1
  • Tagged with
  • 567
  • 567
  • 93
  • 86
  • 80
  • 67
  • 65
  • 55
  • 53
  • 52
  • 48
  • 44
  • 43
  • 39
  • 38
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

The role of TAX1BP2 in hepatocellular carcinoma

Hung, Wing-yan, 洪穎欣 January 2012 (has links)
TAX1 Binding Protein 2 (TAX1BP2) has been found to be a centrosome duplication regulating protein. Previous findings have demonstrated that over-expression of TAX1BP2 suppresses centrosome over-duplication. Recently, our lab has revealed that TAX1BP2 is a novel tumor suppressor in hepatocellular carcinoma (HCC) regulated by cyclin-dependent protein kinase 2 (CDK2), nevertheless, the molecular mechanism of how TAX1BP2 regulates centrosome duplication and the link between its centrosome duplication regulatory ability and the tumor suppressing property remain elusive. With the aim to understand the roles of TAX1BP2 in HCC, the present study intended to investigate the link between centrosome duplication regulating ability and tumor suppressing property. Polo-like kinase 4 (PLK4) is a special member of the Polo-like kinase family as its structure is diverged from other family members. Instead of having two Polo-boxes, it carries one Polo-box and one cryptic Polo-box. It has been shown that PLK4 is involved in the formation of centrioles, an important component of centrosome, and is a key regulator of centrosome duplication. Based on the functional similarity, it was hypothesized that PLK4 may function as a regulator of TAX1BP2. To define if PLK4 regulate TAX1BP2, the interaction between PLK4 and TAX1BP2, both in vivo and in vitro, was first confirmed using affinity pulldown and co-immunoprecipitation assays. To understand the significance of the physical interaction, in vitro and in vivo kinase assay were used to study the phosphorylation activity between PLK4 and TAX1BP2. It was demonstrated that TAX1BP2 is a potential substrate of PLK4. Centrosome duplication assay was also performed to investigate if over-expression of PLK4 abolished the centrosome over-duplication suppressing ability of TAX1BP2. In order to delineate the signaling pathway of TAX1BP2, the interaction between TAX1BP2 and its cellular interacting partners was investigated in this study. Ten proteins were isolated as potential interacting partners of TAX1BP2 using Tandem affinity purification (TAP) coupled with Mass Spectrometry protein fingerprinting. Two of the ten proteins, the Ezrin and Mortalin, were confirmed to be binding partners of TAX1BP2 using affinity pull-down assay and TAP, respectively. The identification of the interacting partners suggested that TAX1BP2 may modulate centrosome duplication via alteration of the subcellular localization of Mortalin. These findings helped to delineate the signaling pathway of TAX1BP2 and enabled the better understanding of the roles of TAX1BP2 in tumor suppressor function of HCC. In summary, we demonstrated that TAX1BP2 contains a centrosome duplication regulatory domain (CDRD) and its centrosome duplication regulating ability is critical for its tumor suppressing property. Moreover, three novel interacting partners of TAX1BP2, including Ezrin, PLK4 and Mortalin, are identified. Our findings provide a new insight into the roles of TAX1BP2 in centrosome duplication, hepatocarcinogenesis and metastasis. / published_or_final_version / Anatomy / Master / Master of Philosophy
112

Functions and physiological significance of the N- and C- terminal regions of the Escherichia coli global transcription factor FNR

Pan, Qing, 潘庆 January 2013 (has links)
A facultative anaerobe such as Escherichia coli is able to switch between the aerobic and anaerobic modes of metabolism in response to O2 availability. This adaptation is primarily controlled by a global transcription regulator called FNR (fumarate nitrate reduction). The key property that allows FNR to act as an O2 responsive transcription factor is its capability to dimerize and being activated upon binding of an O2 labile [4Fe-4S]2+ cluster. Previous functional studies have largely focused on the regions of FNR analogous to CRP (cAMP receptor protein), a prototype CRP/FNR family protein which X-ray crystal structure has been resolved. However, E. coli FNR contains extra N- and C-terminal regions that are conserved among various FNR orthologs but are absent in CRP. The functions of these two regions have not been resolved. In this study, their functions and physiological significance to the O2 sensing capacity of FNR were systematically investigated. A three-alanine (3-Ala) scanning library on amino acid 2-19 and 236-250 of FNR was constructed and selective 3-Ala substitution mutants exhibited variable defects. These defects were found to be due to their impairment of intracellular FNR protein levels which was unique only among FNR mutations in these two regions. Introduction of 3-Ala substitution at the residues 239-244, resulting in LAQ239-241A3 and LAG242-244A3 respectively, caused an especially accelerated degradation and decrease of intracellular FNR proteins. These variants were found to be degraded by the ClpXP protease. Sequence alignment of FNR orthologs revealed a highly conserved “L239XXL242XG244” motif, and my experimental data further revealed that L239 and L242 were important residues and were responsible for the defects of LAQ239-241A3 and LAG242-244A3, respectively. Circular dichroism analysis revealed that introduction of LAQ239-241A3 caused conformational changes with a significant loss of secondary structures in FNR. These studies taken together suggest that the N- and C-terminal regions of FNR play an important role in mediating the intracellular protein level of FNR. My studies also specified the ClpXP signals as the N-terminal RR9-10 and C-terminal VA249-250, and indicated that VA249-250 is a more important site than RR9-10 in targeting FNR to proteolysis. The second topic of the thesis involves exploration of the regulatory mechanism of an anaerobically activated multidrug efflux pump MdtEF in E. coli. MdtEF is an important multidrug efflux pump that causes antibiotic resistance upon overexpression. Previous studies revealed that expression of MdtEF was significantly upregulated under anaerobic conditions, but its regulatory mechanism was unknown. In the current study, systematic analyses on the unusually long promoter region of the gadE-mdtEF operon which drives the expression of MdtEF were performed. It was found that unlike FNR, mdtEF was not regulated at post-translational level by proteolysis, but at transcriptional level through the promoter region of gadE. My study showed that anaerobic activation of mdtEF was mediated by the anaerobic regulator ArcA and nitrate responsive regulators NarL and NarP. Important promoter regions P3 and P1 were also identified. This study provides essential molecular basis for the upregulation of MdtEF in a host and clinically relevant conditions. / published_or_final_version / Biological Sciences / Doctoral / Doctor of Philosophy
113

Characterization of S. flexneri DegP

Purdy, Georgiana Elizabeth 28 August 2008 (has links)
Not available / text
114

Behavioral alterations in models of Parkinson's disease

Tillerson, Jennifer Layne 28 August 2008 (has links)
Not available / text
115

The role of endoderm in vascular patterning

Vokes, Steven Alexander 28 August 2008 (has links)
Not available / text
116

Epstein-Barr virus-associated carcinoma arising outside the nasopharynx: a clinico-pathological andmolecular study

Leung, Suet-yi., 梁雪兒 January 1997 (has links)
published_or_final_version / Medicine / Master / Doctor of Medicine
117

Cellular and molecular mechanisms of bilirubin induced neural cell apoptosis and respective therapeutic interventions

Bhatia, Inderjeet. January 2004 (has links)
published_or_final_version / abstract / toc / Paediatrics and Adolescent Medicine / Doctoral / Doctor of Philosophy
118

Active mandibular forward positioning: a molecular and biochemical study

Shen, Gang., 沈剛. January 2000 (has links)
published_or_final_version / Dentistry / Doctoral / Doctor of Philosophy
119

Molecular studies of a glucose-6-phosphate dehydrogenase variant

陳嘉儀, Chen, Kar-yee, Agnes. January 1996 (has links)
published_or_final_version / Biochemistry / Master / Master of Philosophy
120

Mannose-binding lectin and systemic lupus erythematosus: molecular studies

葉偉基, Ip, Wai-kee, Eddie. January 1998 (has links)
published_or_final_version / Paediatrics / Master / Master of Philosophy

Page generated in 0.0133 seconds