• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 358
  • 109
  • 49
  • 24
  • 19
  • 19
  • 19
  • 19
  • 19
  • 19
  • 9
  • 9
  • 1
  • Tagged with
  • 567
  • 567
  • 93
  • 86
  • 80
  • 67
  • 65
  • 55
  • 53
  • 52
  • 48
  • 44
  • 43
  • 39
  • 38
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

Molecular studies of rat {221}-globin gene cluster

區敏宜, Au, Mun-yee, Deborah. January 1996 (has links)
published_or_final_version / Biochemistry / Doctoral / Doctor of Philosophy
122

Impact of immune-driven sequence variation in HIV-1 subtype C Gagprotease on viral fitness and disease progression.

Wright, Jaclyn. January 2011 (has links)
Understanding of the viral and host factors that determine time for progression to acquired immunodeficiency syndrome (AIDS) in individuals infected with human immunodeficiency virus type 1 (HIV-1) could aid in the design of an effective HIV-1 vaccine. Human leukocyte antigen (HLA) class I profile is strongly and consistently associated with differential rates of HIV-1 disease progression, however the mechanisms explaining this are not well understood. It has been hypothesised that “protective” HLA alleles select escape mutations in functionally important epitopes in the conserved group specific antigen (Gag) protein resulting in HIV-1 attenuation, which may result in slower disease progression. Many of the studies investigating the fitness cost of Gag escape mutations have concentrated on a few pre-selected mutations and have not assessed fitness consequences in the natural sequence background. Furthermore, the majority of studies have focussed on HIV-1 subtype B, while HIV-1 subtype C is the most prevalent subtype worldwide. Therefore, in the present study, a large population-based approach and clinically-derived Gag-protease sequences were used to comprehensively investigate the relationship between immunedriven sequence variation in Gag, viral replication capacity and markers of disease progression in HIV-1 subtype C chronic infection. The influence of Gag function on HIV-1 disease progression was further investigated in early HIV-1 subtype C infection. It was also hypothesised that Gag may contribute significantly to overall HIV-1 fitness and towards fitness differences between HIV-1 subtypes. Materials and Methods Recombinant viruses encoding Gag-protease, derived from antiretroviral naïve HIV-1 subtype C chronically (n=406) and recently (n=60) infected patients as well as a small subset of HIV-1 subtype B chronically infected patients (n=25), were generated by electroporation of an HIV-inducible green fluorescent protein (GFP)-reporter T cell line with plasmaderived gag-protease PCR products and linearised gag-protease-deleted NL4-3 plasmid. The replication capacities of recombinant viruses, as well as intact HIV-1 isolates from peripheral blood mononuclear cells of patients chronically infected with HIV-1 subtype C (n=16), were assayed in the GFP-reporter T cell line by flow cytometry. Replication capacity was defined as the slope of increase in percentage infected cells from days 3-6 following infection, normalised to the growth of a wild-type NL4-3 control. Replication capacities were related to patient HLA alleles and markers of disease progression (viral load, CD4+ T cell count, and rate of CD4+ T cell decline in chronically infected patients, and viral set point and rate of CD4+ T cell decline in recently infected patients). Replication capacities were compared between isolates and recombinant viruses encoding Gag-protease from the same isolates, as well as between HIV-1 subtype B and C recombinant viruses matched for viral load and CD4+ T cell count. Bulk sequencing of patient -derived gagprotease amplicons was performed and mutations were identified that were significantly associated with altered viral replication capacity. The fitness effect of some of these mutations was directly tested by site-directed mutagenesis followed by assay of the mutant viruses. Results In HIV-1 subtype C chronic infection, protective HLA-B alleles, most notably HLA-B*81 (p<0.0001), were associated with lower replication capacities. HLA-associated mutations at low entropy sites (i.e. conserved sites) in or adjacent to Gag epitopes were associated with lower replication capacities (p=0.02), especially the HLA-B*81-associated 186S mutation in the TL9 epitope (p=0.0001). The fitness cost of this mutation was confirmed in site-directed mutagenesis experiments (p<0.001), and the co-varying mutations tested did not significantly compensate for this fitness cost. Replication capacity also correlated positively of an HIV-inducible green fluorescent protein (GFP)-reporter T cell line with plasmaderived gag-protease PCR products and linearised gag-protease-deleted NL4-3 plasmid. The replication capacities of recombinant viruses, as well as intact HIV-1 isolates from peripheral blood mononuclear cells of patients chronically infected with HIV-1 subtype C (n=16), were assayed in the GFP-reporter T cell line by flow cytometry. Replication capacity was defined as the slope of increase in percentage infected cells from days 3-6 following infection, normalised to the growth of a wild-type NL4-3 control. Replication capacities were related to patient HLA alleles and markers of disease progression (viral load, CD4+ T cell count, and rate of CD4+ T cell decline in chronically infected patients, and viral set point and rate of CD4+ T cell decline in recently infected patients). Replication capacities were compared between isolates and recombinant viruses encoding Gag-protease from the same isolates, as well as between HIV-1 subtype B and C recombinant viruses matched for viral load and CD4+ T cell count. Bulk sequencing of patient -derived gagprotease amplicons was performed and mutations were identified that were significantly associated with altered viral replication capacity. The fitness effect of some of these mutations was directly tested by site-directed mutagenesis followed by assay of the mutant viruses. Results In HIV-1 subtype C chronic infection, protective HLA-B alleles, most notably HLA-B*81 (p<0.0001), were associated with lower replication capacities. HLA-associated mutations at low entropy sites (i.e. conserved sites) in or adjacent to Gag epitopes were associated with lower replication capacities (p=0.02), especially the HLA-B*81-associated 186S mutation in the TL9 epitope (p=0.0001). The fitness cost of this mutation was confirmed in site-directed mutagenesis experiments (p<0.001), and the co-varying mutations tested did not significantly compensate for this fitness cost. Replication capacity also correlated positivelyof an HIV-inducible green fluorescent protein (GFP)-reporter T cell line with plasmaderived gag-protease PCR products and linearised gag-protease-deleted NL4-3 plasmid. The replication capacities of recombinant viruses, as well as intact HIV-1 isolates from peripheral blood mononuclear cells of patients chronically infected with HIV-1 subtype C (n=16), were assayed in the GFP-reporter T cell line by flow cytometry. Replication capacity was defined as the slope of increase in percentage infected cells from days 3-6 following infection, normalised to the growth of a wild-type NL4-3 control. Replication capacities were related to patient HLA alleles and markers of disease progression (viral load, CD4+ T cell count, and rate of CD4+ T cell decline in chronically infected patients, and viral set point and rate of CD4+ T cell decline in recently infected patients). Replication capacities were compared between isolates and recombinant viruses encoding Gag-protease from the same isolates, as well as between HIV-1 subtype B and C recombinant viruses matched for viral load and CD4+ T cell count. Bulk sequencing of patient -derived gagprotease amplicons was performed and mutations were identified that were significantly associated with altered viral replication capacity. The fitness effect of some of these mutations was directly tested by site-directed mutagenesis followed by assay of the mutant viruses. Results In HIV-1 subtype C chronic infection, protective HLA-B alleles, most notably HLA-B*81 (p<0.0001), were associated with lower replication capacities. HLA-associated mutations at low entropy sites (i.e. conserved sites) in or adjacent to Gag epitopes were associated with lower replication capacities (p=0.02), especially the HLA-B*81-associated 186S mutation in the TL9 epitope (p=0.0001). The fitness cost of this mutation was confirmed in site-directed mutagenesis experiments (p<0.001), and the co-varying mutations tested did not significantly compensate for this fitness cost. Replication capacity also correlated positively with baseline viral load (p<0.0001) and negatively with baseline CD4+ T cell count (p=0.0004), but not with subsequent rate of CD4+ T cell decline (p=0.73). In HIV-1 subtype C recent infection, replication capacities of the early viruses did not correlate with subsequent viral set points (p=0.37) but were significantly lower in individuals with below median viral set points (p=0.03), and there was a trend of correlation between lower replication capacities and slower rates of CD4+ T cell decline (p=0.09). Overall, the proportion of host HLA-specific Gag polymorphisms in or adjacent to epitopes was negatively associated with replication capacities (p=0.04) but host HLA-B-specific polymorphisms were associated with higher viral set points (p=0.01), suggesting a balance between effective Gag CD8+ T cell responses and viral replication capacity in influencing viral set point. A moderate statistically significant correlation was found between the replication capacities of whole isolates and their corresponding Gag-protease recombinant viruses (p=0.04) and the replication capacities of the subtype C recombinant viruses were significantly lower than that of the subtype B recombinant viruses (p<0.0001). The subtype-specific difference in the consensus amino acids at Gag codons 483 and 484 was found in site-directed mutagenesis experiments to largely contribute to the fitness difference between subtypes, possibly by influencing budding efficiency. Discussion The data support that protective HLA alleles, in particular HLA-B*81, attenuate HIV-1 through HLA-restricted CD8+ T cell-mediated selection pressure on Gag. Results suggest that viral replication capacity determined by sequence variability in Gag-protease has an impact on HIV-1 disease progression, but also indicate that a balance between HLA-driven fitness costs and maintenance of effective CD8+ T cell responses is important in determining clinical outcome. Gag-protease was observed to significantly contribute to overall HIV-1 replication capacity and variability in this region between HIV-1 subtypes B and C is suggested to partly explain the difference in viral fitness between these subtypes. Specific mutations in Gag-protease associated with viral attenuation were identified and it was also observed that mutations in conserved Gag regions carried the greatest cost to HIV-1 replication capacity. Overall, the data support the concept of, and may assist in the rational design of, an HIV-1 vaccine in which immune responses are directed towards several conserved epitopes, particularly in Gag, with the aim to constrain immune escape (thereby maintaining effective CD8+ T cell responses) and attenuate HIV-1 (in the event of partial escape), resulting in slower disease course and reduced HIV-1 transmission at the population level. / Thesis (Ph.D.)-University of KwaZulu-Natal, 2011.
123

The molecular chaperone α-crystallin protects proteins from UV-induced aggregation

Knight, Grady C. 08 1900 (has links)
No description available.
124

Evidence that a chloroplast membrane protein is located in the mitochondria of photosynthetic and non-photosynthetic euglenoids

Bonavia-Fisher, Bruna. January 2000 (has links)
1. Distribution of the two photosystems (PS I and PS II) in the thylakoid membranes of the alga Euglena gracilis. The distribution of photosystem I and II (PS I and PS II) in the alga Euglena gracilis Z strain was studied by electron microscopic immunocytochemistry. In this alga, the thylakoids are not organized in gram structures, as they are in higher plants. Two different antibodies were used to identify PS I. One is directed against particles of PS I from maize and the other against the 60 and 62 kDa PS I reaction centre proteins of the cyanobacterium Synechococcus elongatus. Both antibodies demonstrated the presence of PS I in the two types of thylakoid membranes, appressed (AM) and non-appressed (NAM). Quantitative analysis showed that 60--74% of PS I is in the AM and 26--40% is in the NAM, and since about 80--90% of the membranes are AM, that PS I is more concentrated in the NAM. An antibody directed against the CP47 protein of PS II also revealed labelling in both types of thylakoid membranes (54% in AM and 46% in NAM). PS II is again more concentrated in the NAM. I demonstrated by the photo-oxidation of 3,3'-diaminobenzidine that there is PS I activity in the two types of membranes and, moreover, that there are changes in this activity during the light cycle of the cell. My results indicate that the distribution of PS I and PS II in Euglena gracilis Z strain is different from that of higher plants and is similar to that seen in green algae. The possible evolutionary significance of our observations are discussed. / 2. Localization of the protein CP47 (plastid protein) in the mitochondria of euglenoids. The localization of the CP47 protein to the mitochondria of euglenoids was studied by electron microscopic immunocytochemistry. My results demonstrate that this protein, which is coded by chloroplast DNA in all algae and plants, is present in whole or in part in the mitochondria of Euglena gracilis and related euglenoids. I used two different antibodies against the protein CP47 (anti-CP47 from Chlamydomonas reinhardtii and S. elongatus) to test wild-type, light-grown, cells of Euglena. Both antibodies selectively labelled the mitochondria. These results furthermore suggest that this labelling is particularly associated with mitochondrial cristae. Anti-CP47 from S. elongatus also labelled the mitochondria of other euglenoids, such as dark-grown cells of Euglena gracilis, the mutant Y9Z1NaL, and Astasia longa. Since the CP47 protein is present in dark-grown cells and in the mutant Y9Z1NaL, which are organisms that do not have an active psbB gene, I suggest that a gene transfer has occurred from the plastid to the mitochondria during evolution. Because our results show the presence of CP47 in the mitochondria of Astasia longa, I postulate that the transfer occurred before the branching of Astasia from Euglena.
125

Effects of in vitro uniaxial cyclic stretch upon rat aortic smooth muscle cells

Schnetzer, Karen Joan 12 1900 (has links)
No description available.
126

Force dependence of cell bound E-selectin/carbohydrate ligand binding characteristics

Piper, James Wilson 12 1900 (has links)
No description available.
127

A molecular analysis of the T-cell receptor

Vessey, S. J. R. January 1997 (has links)
The recognition of MHC-peptide ligands by the T cell receptor (TCR) is central to the induction of the adaptive immune response. This thesis describes the development of a bioassay for TCR recognition which was then used to undertake a molecular analysis of the TCR/MHC-peptide interaction. 1. A TCR-CD3ϛ chimeric receptor was stably expressed in the cell line RBL-2H3 to give the transfectant RBL-008. RBL-008 was shown to exhibit MHC-restricted peptide-specific responses to both cellular and multimerised recombinant HLA-A2-pol peptide targets (Chapter 3). 2. By competitively inhibiting the response of RBL-008 to HLAA2 pol complexes with monovalent soluble recombinant MHCpeptide complexes it was confirmed that the TCR makes significant contact with both the MHC and peptide parts of its ligand. Furthermore it was found that only a few peptides in a random mixture can prevent contact between the TCR and HLA-A2. This has implications for positive selection since it supports evidence suggesting that some TCRs can be selected on a wide range of unrelated peptides (Chapter 4). 2. The bioassay was used to examine the flexibility of TCRpeptide interactions using a panel of variant peptides designed on the basis of the previously published HLA-A2-pol peptide structure (Chapter 5). Several variant peptides were recognised by the TCR and interestingly one of these altered peptide ligands was actually recognised better than the index peptide, raising the prospect of designing 'improved epitopes'. 3. By mutating the β chain of TCR-CD3ϛ chimeric receptor it was shown that allelic variation in the TCR genes can have a significant effect on antigen recognition and may therefore be disease susceptibility candidates genes (Chapter 6). 4. The structural relationship between the V and C domains of the TCR was examined and found to be of considerable functional significance since disruption of this relationship resulted in loss of expression of the TCR-CD3ϛ receptor.
128

An investigation into the role of methylation in mammalian X-chromosome inactivation

Simpson T. Ian, T. Ian January 1999 (has links)
X-chromosome inactivation achieves dosage compensation of X-linked genes between male (XY) and female (XX) mammals. This process involves the down-regulation of most, but not all genes on one of the two X-chromosomes in the nucleus of each female somatic cell. The mechanism of X-inactivation has yet to be elucidated in full, but is known to involve the noncoding transcript of theXist gene, DNA methylation, histone hypo-acetylation and the condensation of higher order chromatin. Recent studies have established mechanisms linking methylation to repressive chromatin structures through methyl-binding proteins and histone deacetylase complexes. In order to better understand the role of methylation in X-inactivation, the promoters of the human Pyruvate dehydrogenase El a (PDHA1) and the human and murine Norrie disease protein (NDP/Ndp) genes were subjected to direct methylation sequencing, allowing the definition of methylation profiles at nucleotide resolution. The promoter of the PDHA1 gene was found to be hyper-methylated on the inactive X-chromosome and hypo-methylated on the active X-chromosome in agreement with studies at the promoters of other X-linked housekeeping genes. Methylation at the promoters of the NDP/Ndp genes was extensively investigated in a range of primary tissues and cell lines. The Ndp promoter was found to be methylated on both active and inactive X-chromosomes, but hypo-methylated in the proximal promoter exclusively in tissues that expressed the Ndp gene. The NDP promoter was found to be unmethylated on the active X-chromosome and hyper-methylated across the proximal promoter on the inactive X-chromosome in expressing cell lines and human retinal tissues. The novel promoter sequences of the human and murine SMCX/Smcx genes were isolated for comparative analysis and to provide a future resource for studying methylation at the promoters of genes which escape the X-inactivation process. Promoter sequences of the PDHA1, NDPI Ndp and SMCX/Smcx genes were screened for putative transcription factor binding sites and for conserved CpG-dinucleotide content. Promoter-reporter gene constructs for these genes were transfected into mammalian cells establishing that the sequences studied were functional promoters. Artificial methylation of these constructs was shown to repress their promoter activities.
129

Molecular genetics of beta thalassaemia in Asian Indians : basis for prenatal diagnosis

Varawalla, Nermeen Y. January 1992 (has links)
The primary aim of this thesis was to outline an approach for the prenatal diagnosis of β-thalassaemia in the Asian Indian population by DNA analysis. A polymerase chain reaction (PCR) based, nonradioactive and rapid technique, allele specific PCR, was successfully developed for the detection of β-thalassaemia mutations. A large sample of 656 unrelated carriers from seven different regions of the Indian subcontinent was studied by allele specific PCR and DNA sequence analysis. Sixteen different β-thalassaemia mutations were identified, two of which were new mutations. Of these five common mutations accounted for 91.7% of β-thalassaemia alleles. The β-globin gene haplotypes of 419 β-Th and 196 β-A chromosomes were constructed. On analysis of which it was inferred that β-thalassaemia mutations occurred relatively recently on existing chromosomal backgrounds and then they experienced positive selection. A strong but not invariant haplotype-mutation linkage was observed. A regional variation in the distribution of β-thalassaemia mutations was found. a-Globin gene mapping studies identifed the single a-globin gene deletion in 24 out of 51 unrelated Asian Indians who were suspected to have a-thalassaemia. It is likely that the remaining carriers have nondeletional a-thalassaemia determinants. To perform preimplantation diagnosis of β-thalassaemia, by analysis of a 10-30 cell embryonic biopsy, a PCR protocol was developed. Using two rounds of PCR with nested primers, successful amplification of a 597 bp fragment of the β-globin gene was achieved from as few as two embryonic cells. The problem of false positive amplification was encountered which appeared to be resolved by UV transillumination of the pre-amplification PCR mix. By allele specific PCR with nested primers it was possible to identify the presence or absence of five β-thalassaemia mutations from 10 pg of template DNA (equivalent to approximately two diploid cells). Thalassaemia control in India is a complex issue; the financial, social and demographic factors involved were considered and recommendations made.
130

Peroxidoxin gene expression in Leishmania

Khan, Mahmood Ali, 1962- January 2001 (has links)
Leishmania protozoans are the etiologic agents of the disease leishmaniasis. The parasite exists in two morphological forms: promastigote and amastigote. Promastigotes are found in the gut of the sandfly vector while amastigotes reside inside the vertebrate macrophage. Leishmania, an obligate intracellular parasite, resists toxic reactive oxygen species (ROS) from both endogenous and exogenous sources. Like other protozoa, Leishmania lacks some of the antioxidant defence enzymes such as catalase and glutathione peroxidase (Gpx) that are usually found in aerobic cells. Instead they possess the antioxidant thiol compound trypanothione, in association with specific trypanothione linked antioxidant enzymes such as peroxidoxins. The transformation from promastigote to amastigote is a crucial step for parasite infection and survival. The molecular basis for this transformation is not clearly understood. Recently it was shown that the peroxidoxin gene is present in multiple copies in Leishmania. In the present study we examined the potential of antisense RNA and double stranded RNA (dsRNA) to perform functional knockout of the peroxidoxin gene. Towards that end antisense RNA and dsRNA expressing plasmids, targeting the peroxidoxin gene, were constructed. Leishmania promastigotes were subsequently transfected with these plasmids and the levels of peroxidoxin gene expression were studied. The results from this study suggest that there is no apparent reduction in either the levels of peroxidoxin mRNA or the protein in the transfected promastigotes as compared to the non-transfected cells.

Page generated in 0.0182 seconds