• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 137
  • 35
  • 25
  • 16
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 348
  • 348
  • 100
  • 83
  • 52
  • 39
  • 38
  • 35
  • 35
  • 33
  • 30
  • 29
  • 26
  • 26
  • 26
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Estrutura molecular e espectros de EPR do composto monocristalino CuBr2(fdmp)2. / Molecular structure and EPR spectra of the monocrystalline compound CuBr2(fdmp)2.

Munte, Claudia Elisabeth 19 July 1995 (has links)
Estão sendo apresentados, neste trabalho, estudos estruturais e magnéticos do composto de [CuBr2(fdmp)2] utilizando as técnicas de difração de Raio-X e espectroscopia de EPR. a complexo cristaliza no grupo espacial P21/n com a=8.1653(47)&#197, b=10.432(3)&#197, c=13.385(4)&#197, &#946=100.12(4)&#176 e Z=2. Os íons de Cu(II), que estão em coordenação quadrado-planar trans ligando-se a dois Nitrogênios e dois Bromos, se encontram em centros de inversão. Somente urna linha de EPR e observada, proveniente do colapso das ressonâncias relativas aos dois íons de Cu(II) magneticamente não equivalentes, causado pela interação de troca. Devido a diferença significativa entre os pesos atômicos do Nitrogênio e Bromo, não e esperada urna simetria axial para o tensor g como é comum ocorrer em vários complexos de Cu(II); de fato, a decomposição de g cristalino para os dois g moleculares revela três autovalores distintos. Alem disso, a direção de maior g não coincide exatamente com a normal ao quadrado-planar, como é comum nesses complexos: se encontra rodada de &#8764 5&#176 em direção ao Bromo, caracterizando um estado fundamental do tipo dx2-y2 com mistura de dyz. Outro fato incomum verificado foi a dependência do fator g com a freqüência e a presença de contribuições não-seculares, característicos de sistemas em que a freqüência de troca é próxima a freqüência de Larmor. Uma analise da variação angular da largura de linha de ressonância foi utilizada para a determinação do parâmetro de troca &#8204J&#8204. Está também incluído, neste trabalho, um método numérico de decomposição de g cristalino em g moleculares e sua comparação com métodos da literatura. / In the present work, we discuss the structural and magnetic properties of the [CuBr2(fdmp)2] compound deduced from studies of X-ray diffraction and EPR spectroscopy. This complex crystallizes in the spatial group P21/n with a=8.1653(47)&#197, b=10.432(3)&#197, c=13.385(4)&#197, &#946=100.12(4)&#176 and Z=2. The copper ions, Cu (II), are in a square-planar coordination bound to two nitrogen and two bromine atoms. They are localized in inversion centers. Only one EPR line has been observed due to the collapse of the resonances of the two magnetically inequivalent Cu (II) ions caused by a strong exchange interaction between them. Since nitrogen and bromine have significantly different atomic weights we may not expect an axially symmetric g-tensor as is commonly found in many Cu (II) complexes. In fact, the decomposition of the experimental crystalline g-tensor into two molecular tensors reveals three distinct eigen-values. Furthermore, the axis of the largest molecular eigen-value does not exactly coincide with the normal of the square plane: it is rotated by &#8764 5&#176 toward the bromine atom which characterizes a dx2-y2 ground state with some contribution from a dyz state. Another unusual fact that has been revealed in our studies is the frequency dependence of the g-factor, due to the presence of non-secular contributions to Hamiltonian, which are characteristic for systems with a exchange frequency near the Larmor frequency. In order to determine the exchange factor &#8204J&#8204, we analyzed the angular dependence of the line broadening. In the present work we also included a numerical method for the decomposition of the crystalline g-tensor into molecular ones and compared it with other methods found in the literature.
92

Multinuclear silver-ethynide supramolecular synthons for the construction of coordination networks. / CUHK electronic theses & dissertations collection

January 2007 (has links)
Incorporation of heteroaromatic rings (pyridyl, pyrazinyl, pyrimidyl and thienyl) in the silver-ethynide supramolecular synthon led to a series of silver(I) double salts of various heterocyclic ethynide ligands. Through variation of the relative orientations between the ethynide moiety and heteroatom as well as between heteroatoms, different coordination networks were generated. / Synthetic and structural studies were carried out on a series of silver(I) complexes of phenylethynide and phenylethynide derivatives with alkyl substituents (methyl, tert- butyl, trifluoromethyl) at variable positions (p-, m-, o-) on the aromatic ring. The invariable appearance of the mu4- and mu5-ligation modes of the ethynide moiety in ten silver(I) complexes reaffirms the general utility of the silver-arylethynide supramolecular synthon Ar-C≡C⊃Agn( n = 4, 5) in coordination network assembly. / Systematic investigation on silver(I) tert-butylethynide complexes resulted in the establishment of the general utility of the silver-ethynide supramolecular synthon with an alkyl tail. Upon the addition of nitrile ligands from CH3CN, CH3CH2CN to (CH3) 3CCN, adjacent silver ethynide moieties tBu-C≡C⊃Ag 5 approach closer to each other, and the resulting crystal structure transforms from a 2-D hydrogen bonding network, through a 2-D network held by hydrogen bonding and coordination, to a 2-D coordination network. Employment of the multidentate dicarboxylate ligand O2CCF2CF 2CO2 and the dinitrile ligand NC(CH2)4CN led to the formation of higher-dimensional networks. / The above-mentioned structural studies of silver-ethynide complexes of aromatic or heteroaromatic ligands indicate that pi-pi stacking plays a pivotal role in the self-assembly of corresponding silver-ethynide synthons. Investigation of the silver(I) complexes of phenylethynide and its derivatives with different substituents (methyl, tert- butyl) in variable positions (o-, m-, p-) on the aromatic ring shows the relative position and the bulk of substituents both affect the pi-pi stacking between adjacent phenyl rings. Furthermore, a comparative study of pi-pi stacking in the nitrate complexes Ag2(m-C≡CC 6H4C≡C)] · 5AgNO3 · 3H 2O (38), [(3-AgC≡C)-py] · 3AgNO3 (45), 2[(2-AgC≡C)-pyraz] · 6AgNO3 3H 2O (50) and 2[2,3-(AgC≡C)2-thienyl] · 10AgNO3 (56) suggests that the pi-electron deficiency of the aromatic ring also weakens this non-covalent interaction. (Abstract shortened by UMI.) / The ensuing study of silver(I) phenylenediethynide complexes led to the recognition of another kind of supramolecular synthon, Agn⊂ C2---R---C2⊃Agn (R= p-, m-, o-C6H4; n = 4, 5). / The reaction of Li-C≡C-Ca≡C-Li (generated in situ from hexachloro-1,3-butadiene and nBuLi) with AgNO3 led to the generation of a new silver carbide, silver 1,3-butadiynediide (Ag2C4). A series of fifteen double and multiple salts of Ag2C4 were synthesized by dissolving this polymeric starting material Ag2C4 in a concentrated aqueous solution of soluble silver salts (e.g. AgNO3, AgCF 3CO2, AgC2F5CO2). The silver-ethynide interaction may be conceived as a new kind of supramolecular synthon for the construction of 1-D, 2-D and 3-D coordination polymers. The terminal silver-ethynide interactions that are assigned in diverse configurations can be conveniently classified into three types: sigma, pi and mixed (sigma,pi), and tuned by variation of ancillary anionic ligands. In addition, the controlled hydrolysis of hexafluorophosphate led to the generation of the second silver quadruple salt Ag2C4 · 4AgNO3 · AgPF 2O2 · Ag3PO4 (4). The (F)2(H2O)18 fluoride-water tape in Ag 2C4 · 2AgF · 10AgC2F5CO 2 · CH3CN · 12H2O (10) and the (C4)3 Ag18 aggregate in 3Ag 2C4 · 12AgC2F5CO2 · 5[BzMe3N)C2F5CO2] · 4H 2O (15) are both unprecedented among silver(I)complexes. / This thesis describes our effort to explore, develop and utilize the silver-ethynide interaction in new kinds of metal-ligand supramolecular synthons for the construction of silver(I) coordination networks. / Zhao, Liang. / Adviser: Thomas C. W. Mak. / Includes supplementary digital materials. / Source: Dissertation Abstracts International, Volume: 69-02, Section: B, page: 1011. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2007. / Includes bibliographical references (leaves 208-228). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. [Ann Arbor, MI] : ProQuest Information and Learning, [200-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstracts in English and Chinese. / School code: 1307.
93

Supramolecular assembly of multinuclear silver(I) complexes containing ethynediide, 1,3-butadiyne-1,4-diide or 1,5-hexadiyne-1,6-diide. / CUHK electronic theses & dissertations collection

January 2013 (has links)
Hu, Ting. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2013. / Includes bibliographical references (leaves 185-198). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract also in Chinese.
94

Supramolecular assembly of multinuclear silver(I) complexes containing Alkyl or aromatic ethynide. / CUHK electronic theses & dissertations collection

January 2012 (has links)
本論文對炔銀化合物提出系統性的合成和結構硏究,使用一種新型的多核屬的超分子合成子,從而建構出一系配位元網絡。 / 我們開發出同的結晶技術,在PhC≡C⊃Agn (n = 3, 4, 5)超分子合成子,通過加入同銀鹽,從而相對地獲得獲得銀鏈4AgC≡CPh・10AgCF₃CO₂・8DMSO (4),層銀銀平面AgC≡CPh・AgNO₃ (1) 和2AgC≡CPh・AgNO₃ (2),粗銀柱5AgC≡CPh・AgNO₃AgCF₃SO₃・2DMSO (5),陽子銀柱[Ag₅(PhC≡C)₄(DMSO)₂]X (X = ClO₄, BF₄, PF₆, AsF₆ and SbF₆) (3)。 / 上述結果鼓我們展開進一步的硏究,通過改變芳香環上取代基的性質或位置 (F, Cl, Br, I, Me, C(=O)CH₃, NO₂ 和 C≡N) 產出同的銀結構,如鏈,柱,帶,層,三維多孔配位聚合物,以及多面體銀柱。如,化合物[(NO₃)@Ag₁₅(C≡CC₆H₄F-2)₁₀](NO₃)₄ (15)內有一個硝酸子作為模板所組成的十五核橄欖形銀簇多面體。此 Ag₁₅簇可接在一起,形成一條銀鏈。個硝酸子被包裏在一個 Ag₂₆花生雙中,花生銀雙繫在一起並形成一條多面體銀柱[(NO₃)₂@Ag₂₆(C≡CC₅H₄Me-2)₁₆](NO₃)₈ (23)。 / 在炔銀超分子合成子中,銀烯基和銀氰基相互作用發揮重要作用生成二維有機銀網絡AgC≡CCH₂OC₆H₄(CH=CH₂-2) · 6AgCF₃CO₂ · 3H₂O (31) 和2AgC≡CC₆H₄(C≡N-4) · 4AgO₂CCF3 · 2DMSO · H₂O (36)。 / 多環芳烴(PAHs)中的 π 電子體系具有鍵合屬子的能。此陽子與 π 電子間的相互作用提供一個潛在有效的做法去建新型固態結構。我們的構思是硏究 π-π 堆積和銀雜環作用,在RC≡C⊃Agn (n = 4, 5; R = 萘基或喹啉基) 超分子合成子建設配位聚合物。在(C₁₀H₇C≡C-1)Ag · 3AgO₂CCF₃ · 3H₂O (38) 和 (C₁₀H₇C≡C-2)Ag · 3AgO₂CCF₃ · 2H₂O · MeCN (39) 中,Ag-π 作用成功引進在炔銀超分子合成子系統。分子間的 π-π 堆積作用有助於炔銀化合物的超分子合成子組裝 Ag(1-NC₉H₆C≡C-2) · 3AgO₂CCF₃ · 3H₂O (44) 和 Ag(1-NC₉H₆C≡C-4) · 3AgO₂CCF₃ · 2H₂O (47)。 / 傳統上,陰子模板是合成高核密堆積銀簇合物的簡方法。銀簇合物的核密堆積可以通過調整陰子模板的大小和使用同炔基配體。在使用巨型多酸(POMs)陰子,Mo₆O₂₂⁸⁻,形成一個龐大的十核炔銀簇合物後,我們硏究出另一種方法合成高核密堆積銀簇合物。一個形十二面體十四核炔銀簇合物通過在溶液中的重新組裝過程產生出三十八核炔銀簇合物,把在小銀簇合物中的氯模板轉化為偽八面體Cl₆Ag₈核心的巨型簇合物 Ag₃₈C₁[₆(tBuC≡C)₂₀(ClO₄)₁₂ · Et₂O (48) 和Ag₃₈C₁₆(chxC≡C)₂₀(ClO₄)₁₂ · 1.5Et₂O (49). / This thesis presents a systematic synthetic and structural study of silver(I) ethynide complexes employing a new kind of polynuclear metal-ligand supramolecular synthon for the construction of silver(I) coordination networks. / We have developed different crystallization techniques in the supramolecular assembly of the Ph-C≡C⊃Ag[subscript n] (n = 3, 4, 5) metal-ligand synthon and various anions to obtain an infinite silver(I) chain in 4AgC≡CPh10AgCF₃CO₂・8DMSO (4), silver(I) layers in 2AgC≡CPh・AgNO₃(2) and AgC≡CPh・AgNO₃ (1), a thick silver(I) column in 5AgC≡CPh・AgNO₃・AgCF₃SO₃・2DMSO (5), and cationic silver(I) columns in [Ag₅(PhC≡C)₄(DMSO)₂]X (X = ClO₄, BF₄, PF₆, AsF₆ and SbF₆) (3). / The above results encouraged us to carry out further investigation through variation of the nature or position of substituents (F, Cl, Br, I, Me, C(=O)CH₃, NO₂ and C≡N) on the aromatic ring to yield silver(I) chain, column, ribbon, layer, and 3D porous coordination polymers, as well as a polyhedral silver(I) column. For example, an oliveshaped Ag₁₅ core exists in [(NO₃)@Ag₁₅(C≡CC₆H₄F-2)₁₀](NO₃)₄ (15), in which the encapsulated nitrate ion acts as a template for the formation of the Ag₁₅ cluster. Such Ag₁₅ clusters are then joined together to form a polymeric silver(I) chain. Peanut-shaped silver(I) double cages, each formed from two nitrate ions encapsulated within a Ag₂₆ cage, are linked together to form a polyhedral silver(I) chain in [(NO₃)₂@Ag₂₆(C≡CC₅H₄Me-2)₁₆](NO₃)₈ (23). / The silver(I)-ethynide supramolecular synthon participating in silver(I)vinyl and silver(I)cyano interactions plays an important role to generate 2-D silver-organic networks in AgC≡CCH₂OC₆H₄(CH=CH₂-2) · 6AgCF₃CO₂ · 3H₂O (31) and 2AgC≡CC₆H₄(C≡N-4) · 4AgO₂CCF3 · 2DMSO · H₂O (36). / The π-electron system of polycyclic aromatic hydrocarbons (PAHs) is known to be capable of bonding to metal ions. The exploitation of such cation-π interactions provides a potentially fruitful approach to building novel solid-state architectures. Our conceived idea is to investigate the π-π stacking and silver(I)-heteroaromatic interactions for the construction of coordination polymers using the R-C≡C⊃Ag[subscript n] (n = 4, 5; R = naphthalenylethynide or quinolinylethynide) supramolecular synthon. In the compounds (C₁₀H₇C≡C-1)Ag · 3AgO₂CCF₃ · 3H₂O (38) and (C₁₀H₇C≡C-2)Ag · 3AgO₂CCF₃ · 2H₂O · MeCN (39), silver-π interaction has been successfully introduced into silver(I)ethynide systems. Intermolecular π-π interaction contributes to the assembly of supramolecular synthons in compounds Ag(1-NC₉H₆C≡C-2) · 3AgO₂CCF₃ · 3H₂O (44) and Ag(1-NC₉H₆C≡C-4) · 3AgO₂CCF₃ · 2H₂O (47). / Traditionally, anion templates are used in a facile approach for the synthesis of high-nuclearity silver(I) clusters. The cluster nuclearity can be controlled by adjusting the size of the templating anions and by using different alkynyl ligands. After using the giant polyoxometalates (POMs) anion, Mo₆O₂₂⁸⁻, to form a large Ag₆₀ alkynyl cluster, we have developed another approach to synthesize high-nuclearity silver(I) clusters. Generation of a Ag₃₈ ethynide cluster from a rhombic dodecahedral Ag₁₄ ethynide cluster as precursor occurs in solution via a re-assembly process that involves transformation of the encapsulated chloride template in the small cluster into a pseudo-Oh Cl6Ag8 core in the giant cluster complexes Ag₃₈C₁₆([superscript t]BuC≡C)₂₀(ClO₄)₁₂ · Et₂O (48) and Ag₃₈C₁₆(chxC≡C)₂₀(ClO₄)₁₂ · 1.5Et₂O (49). / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Cheng, Ping Shing. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2012. / Includes bibliographical references (leaves 216-225). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract also in Chinese. / Chapter Acknowledgment --- p.i / Chapter Abstract --- p.ii / Chapter Table of Contents --- p.vi / Chapter Index of Compounds --- p.viii / Chapter Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- Coordination Polymers and Supramolecular Architectures --- p.1 / Chapter 1.1.1 --- Influence of Metal Cations --- p.2 / Chapter 1.1.2 --- Influence of Spacer Ligands --- p.3 / Chapter 1.1.3 --- Influence of Counter Anions --- p.4 / Chapter 1.1.4 --- Influence of Crystallization Techniques --- p.6 / Chapter 1.2 --- Argentophilic Interaction --- p.7 / Chapter 1.2.1 --- Multinuclear Silver-Ethynide Aggregates and Discrete Molecules --- p.9 / Chapter 1.2.1.1 --- Silver(I)-Ethynide Aggregates to Multi-dimensional Structures --- p.10 / Chapter 1.2.1.2 --- High-Nuclearity Homo- and Hetero-d¹° Metal Alkynyl Clusters --- p.13 / Chapter 1.2.2 --- Argentophilic chain and column --- p.15 / Chapter 1.2.3 --- Argentophilic layer --- p.18 / Chapter 1.3 --- Supramolecular Synthons in Crystal Engineering --- p.20 / Chapter 1.3.1 --- Coordination Chemistry of silveralkynyl complexes --- p.22 / Chapter 1.3.2 --- Coordination Chemistry of silveralkene complexes --- p.25 / Chapter 1.3.3 --- Coordination Chemistry of silveraromatic complexes --- p.26 / Chapter 1.4 --- Research strategy and Plan --- p.29 / Chapter Chapter 2 --- Argentophilic Infinite Chain, Column and Layer Structures Assembled with the Multinuclear Silver(I)Phenylethynide Supramolecular Synthon Syntheses of Silver(I)- Ethynide Complexes --- p.32 / Discussion --- p.52 / Conclusion --- p.55 / Chapter Chapter 3 --- Assembly of Multinuclear Supramolecular Synthon X-C₆H₄-C≡C⊃Ag[subscript n] (n = 3, 4; X = F, Cl, Br, I) Incorporating Isomeric Halophenylethynides and Silver Nitrate --- p.57 / Discussion --- p.84 / Summary --- p.86 / Chapter Chapter 4 --- Supramolecular Assembly of Silver(I) Alkyl and Aryl Ethynide with Silver(I) Nitrate in the Formation of Argentophilic Layers --- p.87 / Discussion --- p.121 / Summary --- p.122 / Chapter Chapter 5 --- Assembly of Organometallic Networks with Bifunctional Multinuclear Silver(I)-Ethynide Supramolecular Synthons and Silver Trifluoroacetate --- p.123 / Discussion --- p.149 / Summary --- p.151 / Chapter Chapter 6 --- Network Assembly with Multinuclear Silver(I) Naphthalenyl and Quinolinyl Ethynide Supramolecular Synthons R-C≡C⊃Ag[subscript n] (n = 4, 5) --- p.152 / Discussion --- p.179 / Summary --- p.180 / Chapter Chapter 7 --- Enlargement of Globular Silver Ethynide Cluster via Core Transformation and Re-Assembly --- p.181 / Discussion --- p.187 / Conclusion --- p.189 / Chapter Chapter 8 --- Experimental Section --- p.190 / Chapter 8.1 --- General --- p.190 / Chapter 8.2 --- Preparation of polymeric silver(I) ethynide complexes --- p.190 / Chapter 8.3 --- Preparation of complexes 1-49 --- p.196 / Chapter 8.4 --- X-Ray Crystallographic Analysis --- p.215 / References --- p.216 / Chapter Appendix I --- Publication Based on Research Findings --- p.226 / Chapter Appendix II --- Crystal Data --- p.228 / Chapter Appendix III --- Atomic Coordinates, Thermal Parameters, Bonds Lengths and Bond Angle (Available as an Electronic File) --- p.239
95

Silver-halophenylethynide and silver-nitrophenylethynide supramolecular synthons for the construction of coordination networks.

January 2009 (has links)
Wang, Minji. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2009. / Includes bibliographical references (leaves 91-97). / Abstracts in English and Chinese. / Acknowledgement --- p.i / Abstract --- p.ii / 摘要 --- p.iii / Chapter Chapter 1. --- Introduction --- p.1 / Chapter 1.1 --- Weak Intermolecular Interactions --- p.1 / Chapter 1.1.1 --- Van der Waals Interaction --- p.1 / Chapter 1.1.2 --- Hydrogen Bonds --- p.2 / Chapter 1.1.3 --- π…π Interactions --- p.4 / Chapter 1.1.4 --- Lone-Pair…Aromatic Interactions --- p.5 / Chapter 1.1.5 --- Halogen…Halogen Interactions --- p.6 / Chapter 1.2 --- Argentophilic Interaction --- p.7 / Chapter 1.3 --- Silver Acetylenediide and Silver Arylethynide --- p.11 / Chapter 1.3.1 --- "C2@Agn(n = 6, 7, 8, 9, 10)" --- p.11 / Chapter 1.3.2 --- "Ag4eC=C-C=Cz>Ag4 and R-C=C@=)Agn, (n = 4, 5; R = Aryl, t-Bu)" --- p.12 / Chapter 1.4 --- Research Strategy --- p.14 / Chapter Chapter 2. --- "Coordination Networks Constructed with the Supramolecular Synthon System Rx-CsCzAgn (n = 4,5; Rx = halophenyl)" --- p.16 / Chapter 2.1 --- Crystal Structure of AgC=CC6H4l-4 ´Ø 2AgCF3COO (2.1) --- p.17 / Chapter 2.2 --- Crystal Structure of AgC=CC6H4l-4 . 3AgNO3 (2.2) --- p.20 / Chapter 2.3 --- "Crystal Structure of 2AgC=CC6H3Cl2-3,4 . 5AgCF3COO ´Ø 2CH3CN . H20 (2.3)" --- p.25 / Chapter 2.4 --- Crystal Structure of 4AgC=CC6H4Cl-3 . 6AgC2F5COO ´Ø 5CH3CN (2.4) & 4AgOCC6H4Br-3 ´Ø 6AgC2F5COO ´Ø 5CH3CN (2.5) --- p.28 / Chapter 2.5 --- Crystal Structure of 2AgC=CC6H4Cl-2 . 4AgCF3COO ´Ø NC(CH2)4CN (2.6) & 2AgOCC6H4Cl-2 ´Ø 4AgCF3COO ´Ø 2CH3CN (2.7) --- p.32 / Chapter 2.6 --- Crystal Structure of AgC=CC6H4F-2 ´Ø 2CF2(CF2COOAg)2 ´Ø 2CH3CN (2.8) --- p.36 / Chapter 2.7 --- Crystal Structure of 4AgC=CC6H4N02-2 ´Ø 10AgC3F7COO ´Ø 4CH3CN . 4H20 (2.9) --- p.39 / Chapter 2.8 --- Summary --- p.41 / Chapter Chapter 3. --- Network Assembly with the Supramolecular Synthon System Rx-C=C3Agw (/i = 3 to 5; Rx = nitrophenyl) --- p.43 / Chapter 3.1 --- Crystal Structure of AgC=CC6H4N02-2 ´Ø 3AgC2F5COO . 2CH3CN (3.1) --- p.44 / Chapter 3.2 --- Crystal Structure of AgC=CC6H4N02-4 ´Ø 3AgC2F5COO ´Ø CH3CN (3.2) --- p.47 / Chapter 3.3 --- Crystal Structure of AgC=CC6H4N02-4 ´Ø 4AgCF3COO ´Ø 2CH3CN (3.3) --- p.50 / Chapter 3.4 --- Crystal Structure of AgC=CC6H4N02-4 ´Ø 3AgCF3COO . CH3CN ´Ø 0.5NC(CH2)4CN (3.4) --- p.53 / Chapter 3.5 --- Crystal Structure of AgC=CC6H4N02-4 ´Ø 3AgC2F5COO ´Ø 2CH3CN (3.5) --- p.56 / Chapter 3.6 --- Crystal Structure of AgC=CC6H4N02-4 ´Ø 3AgC2F5COO ´Ø CH3CN ´Ø NC(CH2)4CN (3.6) --- p.59 / Chapter 3.7 --- Crystal Structure of 4AgC三CC6H4NOr4 ´Ø 4AgC3F7COO ´Ø 3CH3CN (3.7) --- p.62 / Chapter 3.8 --- Crystal Structure of 3AgC=CC6H4N02-4 ´Ø 3AgCF3COO ´Ø 3CH3CN (3.8) --- p.66 / Chapter 3.9 --- Crystal Structure of 7AgC三CC6H4NOr4 ´Ø 17AgCF3COO ´Ø 11CH3CN ´Ø H20 (3.9) --- p.68 / Chapter 3.10 --- Crystal Structure of AgC=CC6H4N02-4 ´Ø CF2(CF2COOAg)2. AgCFsCOO . H2O (3.10) --- p.72 / Chapter 3.11 --- Summary --- p.76 / Chapter 3.12 --- Further Development --- p.77 / Chapter 3.12.1 --- Elongation of Ethynide Ligands --- p.77 / Chapter 3.12.2 --- Incorporating More Ethynide Ligands into One Compound --- p.78 / Chapter Chapter 4. --- Experimental --- p.79 / Chapter 4.1 --- Synthesis --- p.79 / Chapter 4.2 --- X-Ray Crystallography --- p.84 / References --- p.91
96

The crystal and molecular structure of an aldotriouronic acid-trihydrate: 4-O-methyl-D-glucopyranosyluronic acid ([1 alpha arrow 2]) D-xylopyranosyl ([1 beta arrow 4]) xylopyranose-trihydrate

Moran, Robert A. 01 January 1972 (has links)
No description available.
97

Electrodeposition of Diamond-like Carbon thin films on Silicon and their Characteristical

Wu, Jian-Guang 27 July 2010 (has links)
Diamond-like carbon (DLC) film exhibits an extreme hardness, low friction coefficient, chemical stability, heat conductivity, high resistance, and high optical transparency. There properties lead to remarkable on industrial applications Diamond-like carbon films were deposited onto the silicon (100) and ITO glass substrates. Under the same deposition conditions, the characteristics of DLC films were evaluated by the variations of deposited parameters such as the applied voltage, deposition temperature the concentrations of electrolyte; acetic acid. The properties due to the different substrate were compared and discussed in detail. In experimental work, the properties of DLC film were conducted by various measurements. Scanning electron microscopy can make an insight into the surface morphology also to reveal the uniformity of the DLC films. For the I-t curves of DLC film growth, it can be used to study of the growth mechanism by correlation the surface morphology observed by Scanning electron microscopy (SEM). The transmission, refraction index and optical band gap of DLC film was measured by the N &K analyzer. Finally, the hydrogen content, composition and microstructure of DLC films were characterized by the FTIR and XPS analyze According to above results, DLC film using the electrolyte of acetic acid was more difficult to deposit on Silicon substrate because the very high activation energy and the high hydrogen ion existing in DI water firstly deposited on the surface of Si substrate. For FTIR measurement, The absorption wavenumber of various bonding observed were positioned at 610 cm-1,680 cm-1,1100 cm-1 and 3600 cm-1~3800 cm-1and to be cauterized as the bonding of Si-H¡BSi-O and O-H, respectively. The absorption peaks within the range from 2800 cm-1 to 3100 cm-1 were missing. Peaks observed were attributed to the bonding of Si-C¡B SP3 C-C¡B C-O¡BC-C¡BC=O and C=C and the CHn bonding was missing on the surface of substrate. The reaction mechanism of DLC deposition can be suggested from the results of measurements. As bias voltage applied, the acetic ion; CH3COO- were attracted by the Anode as the state of C¡]Anode¡^-OOCCH3, and then to give electron and form the CH3+ion»PCO2. The hydrogen ion and methyl ion were attracted by cathode. The competitive reaction was built between ions to deposited DLC films and/or to form Si-H. However, experimental results show that the last was preferred and for forming the DLC film was forbidden.
98

Theoretical and computational studies of dissociative recombination of H₃⁺ with low kinetic energy electrons time-independent and time-dependent approach /

Santos, Samantha Fonseca dos. January 2009 (has links)
Thesis (Ph.D.)--University of Central Florida, 2009. / Adviser: Viatcheslav Kokoouline. Includes bibliographical references (p. 138-149).
99

Sensitizer molecule engineering the development of novel Ru(II) polypyridyl complexes for application in dye sensitized solar cells /

Sun, Yali. January 2009 (has links)
Thesis (Ph.D.)--Bowling Green State University, 2009. / Document formatted into pages; contains xix, 184 p. : ill. Includes bibliographical references.
100

In silico predicition of intestinal transport /

Høst, Jan. January 2006 (has links)
Ph.D.

Page generated in 0.0904 seconds