261 |
Molecular Cloning of a Chinese Hamster Mitochondrial Protein Related to the Chaperonin Family of Proteins / Molecular Cloning of a Chinese Hamster Mitochondrial ProteinPicketts, David 12 1900 (has links)
The complete cDNA sequence of a mitochondrial protein from Chinese hamster ovary cells has been determined. This protein, designated P1, was originally identified in cells resistant to the microtubule inhibitor podophyllotoxin (Gupta, 1981). The mutant cell line contained an alteration of the P1 protein that gave rise to a new, more acidic protein, designated M1 (Gupta et al., 1982). The P1 protein was determined to be microtubule-related based on the cross-resistance pattern of the mutants to other microtubule inhibitors, and corelease with tubulin under conditions which cause microtubule depolymerization (Gupta et al., 1982). Subcellular fractionation studies localized this protein to the matrix of the mitochondria (Gupta and Austin, 1987). Antibodies raised against P1 were used to isolate a cDNA clone from human cells (Jindal et al.,1989). The human cDNA clone was used as a probe to screen for clones of the P1 protein in bacteriophage (lambda)gt10/(lambda)gt11 cDNA libraries prepared from CHO cells. The P1 cDNA encodes a protein of 573 amino acids with a relative molecular mass of 60,983 daltons. The first 26 amino acids meet the requirements of a mitochondrial matrix targeting sequence. The mature protein is 547 residues in length with a relative molecular mass of 57,949 daltons. The deduced amino acid sequence shows 97% identity to the the human P1 protein. More interestingly, the amino acid sequence shows extensive homology (42 to 55% identical residues and an additional 15 to 20% conservative replacements) to the chaperonin class of molecular chaperones. This class of proteins includes the hsp60 protein of yeast, the groEL protein of Escherichia coli, the ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit binding protein of plant chloroplasts, and the 62-65-kDa major antigenic protein of mycobacteria and Coxiella burnetii. The homology of P1 with the above proteins begins after the putative mitochondrial presequence and extends to the c-terminal end. Several regions throughout the protein sequence are highly conserved and are proposed to be functional domains of the protein. Also highly conserved is a Gly-Gly-Met repeating motif at the carboxy-terminus. The function of this sequence is undetermined, as yet. A dendrogram was constructed from the sequence homology data. It suggested that mitochondrial P1 evolved from purple bacteria which is the endosymbiont which gave rise to mitochondria. The chaperonin class of proteins have been shown to assist in the assembly of oligomeric protein structures. It is suggested that the P1 protein may play a similar role in mammalian cells. The high degree of homology between P1 and the 65-kDa mycobacterial antigen also suggests that P1 may be involved in certain autoimmune diseases. / Thesis / Master of Science (MS)
|
262 |
Raman spectroscopic analysis of cyanobacterial colonization of hydromagnesite, a putative martian extremophileEdwards, Howell G.M., Jorge Villar, Susana E., Moody, Caroline D., Newton, Emma M., Russell, M.J. January 2005 (has links)
No / Raman spectra of an extremophile cyanobacterial colony in hydromagnesite from Lake Salda in Turkey have revealed a biogeological modification which is manifest as aragonite in the stratum associated with the colony. The presence of key spectral biomarkers of organic protectant molecules such as (8-carotene and scytonemin indicate that the survival strategy of the cyanobacteria is significantly one of UV-radiation protection. The terrestrial location of this extremophile is worthy of consideration further because of its possible putative link with the White Rock formations in Sabaea Terra and Juventae Chasma on Mars.
|
263 |
Correlation Force Spectroscopy for Single Molecule MeasurementsRadiom, Milad 24 July 2014 (has links)
This thesis addresses development of a new force spectroscopy tool, correlation force spectroscopy (CFS), for the measurement of the mechanical properties of very small volumes of material (molecular to µm³) at kHz-MHz time-scales. CFS is based on atomic force microscopy (AFM) and the principles of CFS resemble those of dual-trap optical tweezers. CFS consists of two closely-spaced micro-cantilevers that undergo thermal fluctuations. Measurement of the correlation in thermal fluctuations of the two cantilevers can be used to determine the mechanical properties of the soft matter, e.g. a polymeric molecule, that connects the gap between the two cantilevers. Modeling of the correlations yields the effective stiffness and damping of the molecule. The resolution in stiffness is limited by the stiffness of the cantilever and the frequency by the natural frequency of the cantilevers, but, importantly, the damping resolution is not limited by the damping of the cantilever, which has enabled high-resolution measurements of the internal friction of a polymer. The concept of CFS was originally presented by Roukes' group in Caltech [Arlett et al., Lecture Notes in Physics, 2007]; I developed the first practical versions of CFS for experimentation, and have used it in two applications (1) microrheology of Newtonian fluids and (2) single molecule force spectroscopy. To understand the correlation in thermal fluctuations of two cantilevers I initially validated the theoretical approach for analyzing correlation in terms of deterministic model using the fluctuation-dissipation theorem [Paul and Cross, PRL, 2004]. I have shown that the main advantages of such correlation measurements are a large improvement in the ability to resolve stiffness and damping. Use of CFS as a rheometer was validated by comparison between experimental data and finite element modeling of the deterministic vibrations of the cantilevers using the known viscosity and density of fluids. Work in this thesis shows that the data can also be accurately fitted using a simple harmonic oscillator model, which can be used for rapid rheometric measurements, after calibration. The mechanical properties of biomolecules such as dextran and single stranded DNA (ssDNA) are also described. CFS measurements of single molecule properties of ssDNA reveal the internal friction of the molecule in solution. / Ph. D.
|
264 |
Application of small molecule FPR1 antagonists in the treatment of cancersAhmet, Djevdet S., Basheer, H.A., Salem, Anwar, Lu, Di, Aghamohammadi, Amin, Weyerhäuser, P., Bordiga, A., Almeniawi, J., Rashid, S., Cooper, Patricia A., Shnyder, Steven, Vinader, Victoria, Afarinkia, Kamyar 14 October 2020 (has links)
Yes / The formylpeptide receptor-1 (FPR1) is a member of the chemotactic GPCR-7TM formyl peptide receptor family, whose principle function is in trafficking of various leukocytes into sites of bacterial infection and inflammation. More recently, FPR1 has been shown to be expressed in different types of cancer and in this context, plays a significant role in their expansion, resistance and recurrence. ICT12035 is a selective and potent (30 nM in calcium mobilisation assay) small molecule FPR1 antagonist. Here, we demonstrate the efficacy of ICT12035, in a number of 2D and 3D proliferation and invasion in vitro assays and an in vivo model. Our results demonstrate that targeting FPR1 by a selective small molecule antagonist, such as ICT12035, can provide a new avenue for the treatment of cancers.
|
265 |
Single molecule studies of acidity in heterogeneous catalystsSun, Xiaojiao January 1900 (has links)
Doctor of Philosophy / Department of Chemical Engineering / Keith L. Hohn / Amorphous silica-alumina is widely used as a solid acid catalyst for various reactions in oil refining and the petrochemical industry. The strength and the number of the acid sites in the material are most often believed to arise from the alumina atoms inserted into the silica lattice. The existence of the acidity distribution across the framework is a result of the local composition or the short-range interactions on the silica-alumina surface. Conventional techniques used to characterize silica-alumina provide effective information on the average acidity, but may not reflect the heterogeneity of surface acidity within the material.
Recently, it is possible to study individual catalytic sites on solid catalysts by single molecule fluorescence microscopy with high time and space resolution. Fluorophores can be chosen that emit at different wavelengths depending on the properties of the local environment. By doping these fluorophores into a solid matrix at nanomolar concentrations, individual probe molecules can be imaged. Valuable information can be extracted by analyzing changes in the fluorescence spectrum of the guest molecules within a host matrix. In this research, silica-alumina thin films were studied with single molecule fluorescence microscopy. The samples were prepared by a sol-gel method and a wide-field fluorescence microscope was used to locate and characterize the fluorescent behaviors of pH sensitive probes. In mesoporous thin films, the ratio of the dye emission at two wavelengths provides an effective means to sense the effective pH of the microenvironment in which each molecule resides. The goal of this work was to develop methods to quantify the acidity of individual micro-environments in heterogeneous networks. Pure silica films treated with external phosphate solutions of different pH values were used to provide references of the fluorescence signals from individual dye molecules. SM emission data were obtained from mesoporous Al-Si films as a function of Al content in films ranging from 0% to 20% alumina. Histograms of the emission ratio revealed that films became more acidic with increasing Al content.
The acidity on interior surfaces in zeolite pores was also of interest in this work. A microfluidic device was built to isolate the interior surface from the exterior surface. Some preliminary results showed the potential of using SM fluorescence method to study the acidic properties inside the pores of zeolite crystals.
|
266 |
Estudo de sondas orgânicas e estratégias de marcação fluorescente de DNA: da fotoquímica básica à microscopia óptica de super-resolução / Study of organic probes and strategies for DNA fluorescent labelling: From basic photochemistry to super-resolution optical microscopyLauer, Milena Helmer 12 May 2016 (has links)
A microscopia de fluorescência é uma das técnicas mais poderosas disponíveis atualmente, uma vez que proporciona uma combinação excepcional de alta sensibilidade na detecção, alta especificidade, além de ser consideravelmente não invasiva. Avanços recentes permitiram a detecção em resolução de subdifração, o que eleva sua potencialidade de investigação de um maior número de sistemas e, consequentemente, de avanço científico. O estudo de novas sondas fluorescentes é de fundamental importância para a aplicação em métodos avançados de microscopia óptica. Na primeira vertente da pesquisa, Capítulo 2, foi realizado o estudo fotofísico de uma série de compostos bisarilados derivados do anidrido maleico e de maleimidas sintetizados pela reação de Heck-Matsuda. Visando o aprimoramento do design dessas moléculas, foi realizada a ciclização fotoquímica de tais compostos, resultando em moléculas com anéis condensados, nomeados como derivados de fenantreno, as quais proporcionaram maior estabilidade fotoquímica. A dinâmica do estado excitado remete ao efeito push-pull, em que há um deslocamento de carga notável, mas não completo. Para os compostos com a substituição 4-hidroxifenil foi observado um processo de deslocamento de carga combinado com uma transferência de próton no estado excitado assistida por solvente. Ademais, o estudo dos compostos derivados de fenantreno em microscopia confocal demonstrou que as propriedades locais do solvente afetam a dinâmica de relaxação de fluorescência em diferentes meios condensados e que os mesmos são passíveis de serem aplicados a técnicas avançadas de microscopia de fluorescência. A segunda vertente desta tese, Capítulo 3, explora um sistema biológico em nível de uma única molécula. Especificamente, este capítulo concerne à investigação de uma metodologia ótima para a marcação fluorescente de DNA em sequência específica, através de microscopia de fluorescência com super-resolução. As reações foram conduzidas utilizando uma metodologia de marcação de duas etapas, de acordo com o princípio mTAG. Na primeira etapa, grupamentos contendo alquino terminal, azida ou amina primária são transferidos do cofator análogo ao S-adenosil-L-metionina para o DNA através de uma enzima metiltransferase. Foi utilizada a enzima M.TaqI, a qual tem como alvo a sequência 5\'- TGCA -3\' para modificação. Na segunda etapa é realizado o acoplamento do fluoróforo aos sítios funcionais do plasmídeo (pUC19) através de reações químicas bioortogonais, tais como reação click catalisada por cobre (CuAAC), reação click na ausência de cobre (SPAAC) e acoplamento do grupo amina primária com NHS-éster. Também foi desenvolvida uma metodologia direta de uma etapa, na qual o fluoróforo é diretamente transferido do cofator análogo para o DNA em uma única etapa reacional. Para acompanhar o desempenho das reações foi desenvolvido um ensaio single-molecule para a contagem do número de moléculas de corante ligadas a plasmídeos individuais. A topologia dos plasmídeos após a marcação foi investigada por imagens de AFM em alta resolução. A combinação de ambas as análises demonstrou que a reação SPAAC assim como a reação direta de uma etapa promoveram uma marcação fluorescente quase completa e a técnica de AFM confirmou que o acoplamento de fluoróforos não induziu danos à estrutura dos plasmídeos, os quais preservaram sua morfologia nativa, superenrolada. Além disso, os plasmídeos marcados foram aplicados com sucesso a procedimentos de transfecção em células de mamíferos, indicando que o DNA reteve sua capacidade de codificar informação genética, mesmo na presença de fluoróforos ligados. / Fluorescence microscopy is one of the most powerful techniques currently available, since it provides the unique combination of a high sensitivity in detection, a high specificity, and a considerable non-invasiveness. Recent developments have allowed the detection at a sub-diffraction resolution, which elevates its potentiality to investigate several systems and hence to go further in science. The study of new fluorescent probes is crucial for the application in advanced methods in optical microscopy. In the first extent of this research, Chapter 2, a photophysical study of maleic anhydride and maleimide derivatives, synthesized by the Heck-Matsuda reaction, was performed. Aiming at the improvement of the design of these molecules, a photochemical cyclization was carried out, resulting in molecules with condensed rings, termed as phenanthrene derivatives, which promoted more photochemical stability. The excited state dynamics rely on the push-pull effect, in which a notable, but not complete, charge shift takes place. For the compounds with a 4-hydroxyl substituent, a charge shift combined with an excited state solvent-assisted proton transfer was observed. Additionally, the confocal microscopy study of the phenanthrene derivatives showed that the local properties of the solvent modulate the fluorescence relaxation dynamics in condensed media and hence such dyes can be potential candidates for use in advanced fluorescence microscopy techniques. The second extent of this thesis, Chapter 3, explores a biological system at the single-molecule level. Specifically, this chapter concerns to an investigation of an optimal sequence-specific DNA fluorescent labelling, using super-resolution fluorescence microscopy. The reactions were performed using a two-step methodology, according to the mTAG approach. In the first step, moieties containing a terminal alkyne, azide, or primary amine group are transferred from an S-adenosyl-L-methionine analogue cofactor to the DNA by a methyltransferase enzyme. Herein, the enzyme M.TaqI was used, which targets the 5\'- TCGA -3\' sequence for modification. In the second step, a fluorophore is coupled to the functional sites of the plasmid (pUC19) using bio orthogonal reactions, such as the click reaction catalysed by copper (CuAAC), the copper-free click reaction (SPAAC), and the amino-to-NHS-ester coupling reaction. A direct one-step approach in which the fluorophore is directly transferred to the DNA from the analogue cofactor in a single reaction step, was also developed. A single-molecule assay was developed for counting the number of fluorophores associated with the individual plasmids. The topology of the plasmids after labelling was also investigated by high-resolution AFM imaging. Combining both analysis, the SPAAC as well as the direct one-step reactions were found to promote near-complete labelling and the AFM showed that the fluorophore coupling did not damage the structure of the plasmids and that their native, supercoiled, morphology was preserved. Moreover, labelled plasmids were successfully applied for transfection into mammalian cells, implying that the DNA retained its ability to encode genetic information, even while carrying bound fluorophores.
|
267 |
Reactive and inelastic processes in the gas-phase at ultra-low temperaturesChastaing, Delphine January 2000 (has links)
No description available.
|
268 |
Estudo de sondas orgânicas e estratégias de marcação fluorescente de DNA: da fotoquímica básica à microscopia óptica de super-resolução / Study of organic probes and strategies for DNA fluorescent labelling: From basic photochemistry to super-resolution optical microscopyMilena Helmer Lauer 12 May 2016 (has links)
A microscopia de fluorescência é uma das técnicas mais poderosas disponíveis atualmente, uma vez que proporciona uma combinação excepcional de alta sensibilidade na detecção, alta especificidade, além de ser consideravelmente não invasiva. Avanços recentes permitiram a detecção em resolução de subdifração, o que eleva sua potencialidade de investigação de um maior número de sistemas e, consequentemente, de avanço científico. O estudo de novas sondas fluorescentes é de fundamental importância para a aplicação em métodos avançados de microscopia óptica. Na primeira vertente da pesquisa, Capítulo 2, foi realizado o estudo fotofísico de uma série de compostos bisarilados derivados do anidrido maleico e de maleimidas sintetizados pela reação de Heck-Matsuda. Visando o aprimoramento do design dessas moléculas, foi realizada a ciclização fotoquímica de tais compostos, resultando em moléculas com anéis condensados, nomeados como derivados de fenantreno, as quais proporcionaram maior estabilidade fotoquímica. A dinâmica do estado excitado remete ao efeito push-pull, em que há um deslocamento de carga notável, mas não completo. Para os compostos com a substituição 4-hidroxifenil foi observado um processo de deslocamento de carga combinado com uma transferência de próton no estado excitado assistida por solvente. Ademais, o estudo dos compostos derivados de fenantreno em microscopia confocal demonstrou que as propriedades locais do solvente afetam a dinâmica de relaxação de fluorescência em diferentes meios condensados e que os mesmos são passíveis de serem aplicados a técnicas avançadas de microscopia de fluorescência. A segunda vertente desta tese, Capítulo 3, explora um sistema biológico em nível de uma única molécula. Especificamente, este capítulo concerne à investigação de uma metodologia ótima para a marcação fluorescente de DNA em sequência específica, através de microscopia de fluorescência com super-resolução. As reações foram conduzidas utilizando uma metodologia de marcação de duas etapas, de acordo com o princípio mTAG. Na primeira etapa, grupamentos contendo alquino terminal, azida ou amina primária são transferidos do cofator análogo ao S-adenosil-L-metionina para o DNA através de uma enzima metiltransferase. Foi utilizada a enzima M.TaqI, a qual tem como alvo a sequência 5\'- TGCA -3\' para modificação. Na segunda etapa é realizado o acoplamento do fluoróforo aos sítios funcionais do plasmídeo (pUC19) através de reações químicas bioortogonais, tais como reação click catalisada por cobre (CuAAC), reação click na ausência de cobre (SPAAC) e acoplamento do grupo amina primária com NHS-éster. Também foi desenvolvida uma metodologia direta de uma etapa, na qual o fluoróforo é diretamente transferido do cofator análogo para o DNA em uma única etapa reacional. Para acompanhar o desempenho das reações foi desenvolvido um ensaio single-molecule para a contagem do número de moléculas de corante ligadas a plasmídeos individuais. A topologia dos plasmídeos após a marcação foi investigada por imagens de AFM em alta resolução. A combinação de ambas as análises demonstrou que a reação SPAAC assim como a reação direta de uma etapa promoveram uma marcação fluorescente quase completa e a técnica de AFM confirmou que o acoplamento de fluoróforos não induziu danos à estrutura dos plasmídeos, os quais preservaram sua morfologia nativa, superenrolada. Além disso, os plasmídeos marcados foram aplicados com sucesso a procedimentos de transfecção em células de mamíferos, indicando que o DNA reteve sua capacidade de codificar informação genética, mesmo na presença de fluoróforos ligados. / Fluorescence microscopy is one of the most powerful techniques currently available, since it provides the unique combination of a high sensitivity in detection, a high specificity, and a considerable non-invasiveness. Recent developments have allowed the detection at a sub-diffraction resolution, which elevates its potentiality to investigate several systems and hence to go further in science. The study of new fluorescent probes is crucial for the application in advanced methods in optical microscopy. In the first extent of this research, Chapter 2, a photophysical study of maleic anhydride and maleimide derivatives, synthesized by the Heck-Matsuda reaction, was performed. Aiming at the improvement of the design of these molecules, a photochemical cyclization was carried out, resulting in molecules with condensed rings, termed as phenanthrene derivatives, which promoted more photochemical stability. The excited state dynamics rely on the push-pull effect, in which a notable, but not complete, charge shift takes place. For the compounds with a 4-hydroxyl substituent, a charge shift combined with an excited state solvent-assisted proton transfer was observed. Additionally, the confocal microscopy study of the phenanthrene derivatives showed that the local properties of the solvent modulate the fluorescence relaxation dynamics in condensed media and hence such dyes can be potential candidates for use in advanced fluorescence microscopy techniques. The second extent of this thesis, Chapter 3, explores a biological system at the single-molecule level. Specifically, this chapter concerns to an investigation of an optimal sequence-specific DNA fluorescent labelling, using super-resolution fluorescence microscopy. The reactions were performed using a two-step methodology, according to the mTAG approach. In the first step, moieties containing a terminal alkyne, azide, or primary amine group are transferred from an S-adenosyl-L-methionine analogue cofactor to the DNA by a methyltransferase enzyme. Herein, the enzyme M.TaqI was used, which targets the 5\'- TCGA -3\' sequence for modification. In the second step, a fluorophore is coupled to the functional sites of the plasmid (pUC19) using bio orthogonal reactions, such as the click reaction catalysed by copper (CuAAC), the copper-free click reaction (SPAAC), and the amino-to-NHS-ester coupling reaction. A direct one-step approach in which the fluorophore is directly transferred to the DNA from the analogue cofactor in a single reaction step, was also developed. A single-molecule assay was developed for counting the number of fluorophores associated with the individual plasmids. The topology of the plasmids after labelling was also investigated by high-resolution AFM imaging. Combining both analysis, the SPAAC as well as the direct one-step reactions were found to promote near-complete labelling and the AFM showed that the fluorophore coupling did not damage the structure of the plasmids and that their native, supercoiled, morphology was preserved. Moreover, labelled plasmids were successfully applied for transfection into mammalian cells, implying that the DNA retained its ability to encode genetic information, even while carrying bound fluorophores.
|
269 |
Influence of gangliosides in the dynamics and partitioning of CD82 and its partners / Influence des gangliosides dans la dynamique et la compartimentation de la tétraspanine CD82 et de ses partenairesFernandez, Laurent 22 September 2017 (has links)
Un membre de la famille des tétraspanines, CD82, est une protéine transmembranaire et l'un des rares suppresseurs de métastase identifié jusqu'à présent. Cependant, le mécanisme de suppression de métastase induite par CD82 reste mal compris. Les tétraspanines, y compris CD82, ont la propriété unique de créer un réseau d'interactions protéines-protéines à la membrane plasmique, appelé « tetraspanin web ». Dans ce réseau, CD82 est connu pour interagir avec d’autres tétraspanines, y compris CD9, CD81 et CD151, en plus d’autres protéines membranaires telles que les intégrines, les récepteurs de facteurs de croissance et les protéines de type immunoglobuline. De plus, des travaux antérieurs ont identifié que l'interaction de CD82 avec l’EGFR, d'autres tétraspanines et les intégrines dépend de l'expression des gangliosides au sein de la membrane plasmique.À ce jour, les études dans ce domaine ont utilisé des techniques d'ensemble qui ne peuvent pas tenir compte de la dynamique et de la stochasticité de la membrane, alors qu'il est maintenant bien établi que l'organisation spatio-temporelle de ses composants est cruciale pour certaines fonctions cellulaires.Ainsi, lors de ma thèse de doctorat, j'ai cherché à étudier à la fois la dynamique et la compartimentation de CD82 et de ses partenaires à la membrane plasmique des cellules épithéliales mammaires HB2. Pour ce faire, la technique de pistage en molécule unique basée sur l’utilisation d’un microscope TIRF a été utilisée afin d’obtenir des informations directes à l'échelle nanométrique sur la dynamique de protéines individuelles dans les cellules vivantes. Nos expériences en pistage de molécule unique ont démontré que l'expression de CD82 augmentait la dynamique CD81 à la membrane plasmique des cellules HB2 et modifiait ses interactions au sein du tetraspanin web. En revanche, les dynamiques de CD9 et de l’intégrine α3 n'ont pas été modifiées par l'expression de CD82. De plus, en modifiant enzymatiquement l'expression des gangliosides, nous avons montré que ces lipides sont impliqués à la fois dans la dynamique et la compartimentation des tétraspanines à la membrane plasmique. En effet, la déplétion en gangliosides entraine une augmentation de la dynamique de CD82, CD81 et de l’intégrine α3 ainsi qu'une redistribution des tétraspanines à la membrane plasmique. Nous avons également étudié la migration en 2D des cellules HB2 et montré que CD82 et les gangliosides modifiaient de façon différentielle la migration des cellules HB2.L’ensemble de nos résultats démontrent que CD82 et les gangliosides modulent de manière différente la dynamique et la compartimentation des tétraspanines et de leurs partenaires à la membrane plasmique des cellules HB2. Enfin, ce travail suggère que l'activité de CD82 en tant que suppresseur de métastase pourrait être en partie liée à sa capacité, en coopération avec les gangliosides, à moduler l'organisation spatio-temporelle de ses partenaires au sein du tetraspanin web. / A member of the family of tetraspanins, CD82, is a transmembrane protein and one of the rare metastasis suppressors identified so far. However, the mechanism of CD82-induced metastasis suppression remains not fully revealed. Tetraspanins, including CD82, have the unique property to create a network of protein-protein interactions within the plasma membrane, called tetraspanin web. Within this network, tetraspanins interact with each other (eg. CD82 with CD9, CD81 and CD151) as well as with other proteins, such as: integrins, growth factor receptors and immunoglobulin-like proteins. Additionally previous work has identified that the interaction of CD82 with EGFR, other tetraspanins and integrins depends on the expression of gangliosides at the plasma membrane.To date, studies in this field have employed ensemble-averaging techniques which are unable to account for membrane dynamics and stochasticity. Nevertheless, it is now well established that the spatio-temporal organization of its components is crucial for cellular functions.Thus, during my PhD thesis I aimed to study both the dynamics and partitioning of CD82 and its partners at the plasma membrane of HB2 mammary cells. To achieve this aim, a TIRF-based Single Molecule Tracking (SMT) approach was employed to provide direct nanoscale insights by observing individual proteins in living cells. Our SMT experiments demonstrated that CD82 overexpression increased CD81 dynamics at the plasma membrane of HB2 cells and modified its interaction within the tetraspanin web. In contrast, CD9 and α3 integrin dynamics were not modified by CD82 expression. Moreover, by enzymatically tuning gangliosides expression, we showed that these lipids are involved in both dynamics and partitioning of tetraspanins at the plasma membrane. Indeed, gangliosides depletion resulted in an increase in CD82, CD81 and α3 integrin dynamics as well as a redistribution of tetraspanins at the plasma membrane. We also investigated the 2D migration of HB2 cells showing that CD82 and gangliosides differentially altered the cellular migration of HB2 cells.Taken together, our results demonstrate that both CD82 and gangliosides differentially modulate the dynamics and partitioning of tetraspanins and their partners at the plasma membrane of HB2 cells. Finally, this work suggests that CD82 activity as metastasis suppressor could be in part linked to its ability, in cooperation with gangliosides, to modulate the spatio-temporal organization of its partners within the tetraspanin web.
|
270 |
In vitro, in silico and in vivo studies of the structure and conformational dynamics of DNA polymerase ISustarsic, Marko January 2016 (has links)
DNA polymerases are a family of molecular machines involved in high-fidelity DNA replication and repair, of which DNA polymerase I (Pol) is one the best-characterized members. Pol is a strand-displacing polymerase responsible for Okazaki fragment synthesis and base-excision repair in bacteria; it consists of three protein domains, which harbour its 5’-3' polymerase, 3’-5’ exonuclease and 5’ endonuclease activities. In the first part of the thesis, we use a combination of single-molecule Förster resonance energy transfer (smFRET) and rigid-body docking to probe the structure of Pol bound to its gapped-DNA substrate. We show that the DNA substrate is highly bent in the complex, and that the downstream portion of the DNA is partly unwound. Using all-atom molecular dynamics (MD) simulations, we identify residues in the polymerase important for strand displacement and for downstream DNA binding. Moreover, we use coarse-grained simulations to investigate the dynamics of the gapped-DNA substrate alone, allowing us to propose a model for specific recognition and binding of gapped DNA by Pol. In the second part of the thesis, we focus on the catalytically important conformational change in Pol that involves the closing of the ‘fingers’ subdomain of the protein around an incoming nucleotide. We make use of the energy decomposition method (EDM) to predict the stability-determining residues for the closed and open conformations of Pol, and test their relevance by site-directed mutagenesis. We apply the unnatural amino acid approach and a single-molecule FRET assay of Pol fingers-closing, to show that substitutions in the stability-determining residues significantly affect the conformational equilibrium of Pol. In the final part of the thesis, we attempt to study Pol in its native environment of the living cell. We make use of the recently developed method of internalization by electroporation, and optimize it for organically labelled proteins. We demonstrate the internalization and single-molecule tracking of Pol, and provide preliminary data of intra-molecular FRET in Pol, both at the single-cell and single-molecule levels. Finally, by measuring smFRET within an internalized gapped-DNA construct, we observe DNA binding and bending by endogenous Pol, confirming the physiological relevance of our in vitro Pol-DNA structure.
|
Page generated in 0.0409 seconds