241 |
Polymeric Monolithic Stationary Phases for Capillary Reversed-phase Liquid Chromatography of Small MoleculesLiu, Kun 29 January 2014 (has links) (PDF)
Highly cross-linked monoliths prepared from single cross-linking monomers were found to increase surface area and stability. Therefore, seven cross-linking monomers, i.e., 1,3-butanediol dimethacrylate (1,3-BDDMA), 1,4-butanediol dimethacrylate (1,4-BDDMA), neopentyl glycol dimethacrylate (NPGDMA), 1,5-pentanediol dimethacrylate (1,5-PDDMA), 1,6-hexanediol dimethacrylate (1,6-HDDMA), 1,10-decanediol dimethacrylate (1,10-DDDMA), and 1,12-dodecanediol dimethacrylate (1,12-DoDDMA), were used to synthesize highly cross-linked monolithic columns in 75-µm i.d. capillaries by one-step UV-initiated polymerization using dodecanol and methanol as porogens for reversed-phase liquid chromatography (RPLC) of small molecules. Selection of porogen type and concentration was investigated in detail. Isocratic elution of alkylbenzenes at a flow rate of 300 nL/min was conducted for all of the monoliths. Gradient elution of alkylbenzenes and alkylparabens provided high resolution separations. Several of the monoliths demonstrated column efficiencies in excess of 50,000 plates/m. Monoliths with longer alkyl-bridging chains showed very little shrinking or swelling in solvents of different polarities. In addition, highly cross-linked monolithic capillary columns poly(1,6-HDDMA), poly(cyclohexanediol dimethacrylate) [poly(CHDDMA)] and poly(1,4-phenylene diacrylate) [poly(PHDA)], were synthesized and compared for RPLC of small molecules. Isocratic elution of alkylbenzenes was performed using 1,6-HDDMA and CHDDMA monolithic columns. Gradient elution of alkylbenzenes using all three monolithic columns showed good separations. Monolithic columns formed from 1,6-HDDMA, which had a linear alkyl-bridging chain structure, exhibited the highest column efficiencies (86,000 plates/m). Optimized columns showed high permeability and high run-to-run and column-to-column reproducibilities. Monoliths prepared from controlled/living polymerization was demonstrated exhibiting narrower molecular weight distribution and more homogeneous cross-linked structures due to the reversible character of this polymerization method. Thus, monolithic columns were developed from three cross-linking monomers, i.e., 1, 12-DoDDMA, trimethylolpropane trimethacrylate (TMPTMA) and pentaerythritol tetraacrylate (PETA) using organotellurium-mediated living radical polymerization (TERP) in 150-µm i.d. capillaries for RPLC of small molecules. Selection of the polymerization conditions for the 1,12-DoDDMA monolirh was investigated in detail. Isocratic elution of alkylbenzenes was achieved with good efficiency (47,700 to 64,200 plates/m for uracil) using all monolithic columns prepared using TERP.
|
242 |
Topological states of the diatomic linear chain: effect of impedance matching to the fixed endsGrundmann, Marius 27 April 2023 (has links)
The diatomic linear chain with nearest-neighbor spring constants C1 and C2 has topologically
different bulk states for C1 ≷ C2. A finite chain of N unit cells and fixed ends (the first and last
spring is C1) exhibits two topological end states within the gap for C1 > C2.We investigate the
effect of an impedance mismatch by varying the first and last ‘boundary’ spring constant termed
CF from its ideal value C1. CF = 0 represents an open end and does never lead to topological states.
CF→∞means that also the next site to the boundary is fixed, leading to topological states only
for C1 < C2 since now the first movable spring is C2. Within a range of CF around C1 topological
end states are preserved for C1 > C2. For C2 > C1, topological end states occur when CF exceeds a
certain value.
|
243 |
SINGLE MOLECULE ANALYSIS AND WAVEFRONT CONTROL WITH DEEP LEARNINGPeiyi Zhang (15361429) 27 April 2023 (has links)
<p> </p>
<p> Analyzing single molecule emission patterns plays a critical role in retrieving the structural and physiological information of their tagged targets, and further, understanding their interactions and cellular context. These emission patterns of tiny light sources (i.e. point spread functions, PSFs) simultaneously encode information such as the molecule’s location, orientation, the environment within the specimen, and the paths the emitted photons took before being captured by the camera. However, retrieving multiple classes of information beyond the 3D position from complex or high-dimensional single molecule data remains challenging, due to the difficulties in perceiving and summarizing a comprehensive yet succinct model. We developed smNet, a deep neural network that can extract multiplexed information near the theoretical limit from both complex and high-dimensional point spread functions. Through simulated and experimental data, we demonstrated that smNet can be trained to efficiently extract both molecular and specimen information, such as molecule location, dipole orientation, and wavefront distortions from complex and subtle features of the PSFs, which otherwise are considered too complex for established algorithms. </p>
<p> Single molecule localization microscopy (SMLM) forms super-resolution images with a resolution of several to tens of nanometers, relying on accurate localization of molecules’ 3D positions from isolated single molecule emission patterns. However, the inhomogeneous refractive indices distort and blur single molecule emission patterns, reduce the information content carried by each detected photon, increase localization uncertainty, and thus cause significant resolution loss, which is irreversible by post-processing. To compensate tissue induced aberrations, conventional sensorless adaptive optics methods rely on iterative mirror-changes and image-quality metrics to compensate aberrations. But these metrics result in inconsistent, and sometimes opposite, metric responses which fundamentally limited the efficacy of these approaches for aberration correction in tissues. Bypassing the previous iterative trial-then-evaluate processes, we developed deep learning driven adaptive optics (DL-AO), for single molecule localization microscopy (SMLM) to directly infer wavefront distortion and compensate distortion near real-time during data acquisition. our trained deep neural network monitors the individual emission patterns from single molecule experiments, infers their shared wavefront distortion, feeds the estimates through a dynamic filter (Kalman), and drives a deformable mirror to compensate sample induced aberrations. We demonstrated that DL-AO restores single molecule emission patterns approaching the conditions untouched by specimen and improves the resolution and fidelity of 3D SMLM through brain tissues over 130 µm, with as few as 3-20 mirror changes.</p>
|
244 |
Development Of An Efficient Molecular Single-electron Transport SpectroscopyGarrigues, Alvar 01 January 2013 (has links)
In this thesis I present a complete and detailed guide for the development process and fabrication of efficient single-electron transistors (SETs) and a better single-molecule magnets (SMMs) deposition yield. Starting from a commercial Si/SiO2 wafer I show the steps for the deposition of different layers to fabricate a SET as well as the improvements achieved in those for a completely functional SET device. The development process is based on a combination of optical lithography and e-beam lithography with metal deposition in ultra-high vacuum. The improvements involve a better conductance in the Al gate component, with a controlled formation of the superficial oxide layer and a faster feedback electromigration-induced breaking of Au nanowires for the creation of nanogaps at room temperature. The gate component is improved by increasing its thickness and exposing it to plasma oxidation for the complete oxidation of its surface. The nanowire breaking is realized at room temperature to make use of the surface tension of Au, which, after a previous feedback procedure, eventually opens the final gap in the nanowire. Finally, I demonstrate a new technique that allows increasing the yield of having a SMM connected in the nanowire gap. This new technique is based on monitoring the resistance of the broken nanowires during the SMM deposition from a controlled liquid solution at room temperature. When the resistance ( > GΩ for open gaps) drops to values below Mega-ohms (characteristic resistance of a molecule bridging the gap) for a number of nanowires in the chip, the device is then ready for low temperature measurements.
|
245 |
The Cytopathic Activity Of Cholera Toxin Requires A Threshold Quantity Of Cytosolic Toxin.Bader, Carly 01 January 2013 (has links)
Cholera toxin (CT), secreted from Vibrio cholerae, causes a massive fluid and electrolyte efflux in the small intestine that results in life-threatening diarrhea and dehydration which impacts 3-5 million people per year. CT is secreted into the intestinal lumen but acts within the cytosol of intestinal epithelial cells. CT is an AB5 toxin that has a catalytic A1 subunit and a cell binding B subunit. CT moves from the cell surface to the endoplasmic reticulum (ER) by retrograde transport. Much of the toxin is transported to the lysosomes for degradation, but a secondary pool of toxin is diverted to the Golgi apparatus and then to the ER. Here the A1 subunit detaches from the rest of the toxin and enters the cytosol. The disordered conformation of free CTA1 facilitates toxin export to the cytosol by activating a quality control mechanism known as ER-associated degradation. The return to a folded structure in the cytosol allows CTA1 to attain an active conformation for modification of its Gsα target through ADP-ribosylation. This modification locks the protein in an active state which stimulates adenylate cyclase and leads to elevated levels of cAMP. A chloride channel located in the apical enterocyte membrane opens in response to signaling events induced by these elevated cAMP levels. The osmotic movement of water into the intestinal lumen that results from the chloride efflux produces the characteristic profuse watery diarrhea that is seen in intoxicated individuals. The current model of intoxication proposes only one molecule of cytosolic toxin is required to affect host cells, making therapeutic treatment nearly impossible. However, based on emerging evidence, we hypothesize a threshold quantity of toxin must be present within the cytosol of the target cell in order to elicit a cytopathic effect. Using the method of surface plasmon resonance along with toxicity assays, I have, for the first time, directly measured the efficiency of toxin delivery to the cytosol and correlated the levels of cytosolic toxin to toxin iv activity. I have shown CTA1 delivery from the cell surface to the cytosol is an inefficient process with only 2.3 % of the surface bound CTA1 appearing in the cytosol after 2 hours of intoxication. I have also determined and a cytosolic quantity of more than approximately .05ng of cytosolic CTA1 must be reached in order to elicit a cytopathic effect. Furthermore, CTA1 must be continually delivered from the cell surface to the cytosol in order to overcome the constant proteasome-mediated clearance of cytosolic toxin. When toxin delivery to the cytosol was blocked, this allowed the host cell to de-activate Gs, lower cAMP levels, and recover from intoxication. Our work thus indicates it is possible to treat cholera even after the onset of disease. These findings challenge the idea of irreversible cellular toxicity and open the possibility of postintoxication treatment options.
|
246 |
Controlled Deposition Of Magnetic Molecules And Nanoparticles On Atomically Flat Gold SurfacesHaque, Md. Firoze 01 January 2008 (has links)
In this thesis I am presenting a detailed study to optimize the deposition of magnetic molecules and gold nanoparticles in atomically flat surfaces by self-assembling them from solution. Epitaxially grown and atomically flat gold surface on mica is used as substrate for this study. These surfaces have roughness of the order one tenth of a nanometer and are perfect to image molecules and nanoparticles in the 1-10 nanometers range. The purpose of these studies is to find the suitable parameters and conditions necessary to deposit a monolayer of nano-substance on chips containing gold nanowires which will eventually be used to form single electron transistors by electromigration breaking of the nanowire. Maximization of the covered surface area is crucial to optimize the yield of finding a molecule/nanoparticle near the gap formed in the nanowire after electromigration breaking. Coverage of the surface by molecules/nanoparticles mainly depends on the deposition time and concentration of the solution used for the self-assembly. Deposition of the samples under study was done for different solution concentrations and deposition times until a self-assembly monolayer covering most of the surface area is obtained. Imaging of the surfaces after deposition was done by tapping-mode AFM. Analysis of the AFM images was performed and deposition parameters (i.e. coverage or molecule/particle size distribution) were obtained. The subjects of this investigation were a molecular polyoxometalate, a single-molecule magnet and functionalized gold nanoparticles. The obtained results agree with the structure of each of the studied systems. Using the optimized deposition parameters found in this investigation, single-electron transport measurements have been carried out. Preliminary results indicate the right choice of the deposition parameters.
|
247 |
Investigation Of The Orientation Dependence On Chiroptical Properties Of Single MoleculesCyphersmith, Austin Joseph 01 February 2013 (has links)
Optical activity is the defining property of chiral materials that is essential for characterization in biology, chemistry, and physics. While a substantial body of research has provided a strong theoretical framework of the origin of optical activity, we still know very little by way of experiment about an individual molecule’s contribution to the bulk optical activity. The chiroptical response of a single molecule can depend on molecular orientation and local molecular environment, information which is lost in ensemble averaging.
This thesis focuses on establishing methods for a priori determination of chiral molecule orientations and refining measurements to probe the chiroptical response of a single molecule using a generalization of well-known defocused emission pattern imaging. Recent experiments probing the chiroptical response of single helicene dimer molecules offer new insight into the relationship between local molecular environment and coupling between chiral moieties. New experiments, such as probing the chiroptical response of an achiral, non-centrosymmetric molecular systems and polarization resolved spectral measurements which probe the Davydov splitting of coupled chromophore systems offer promising new avenues for understanding the connection between the polarization properties of single molecules and the ensemble.
|
248 |
Charge and Energy Transport in Single Quantum Dot/Organic Hybrid NanostructuresEarly, Kevin Thomas 01 September 2010 (has links)
Hybrid quantum dot /organic semiconductor systems are of great interest in optoelectronic and photovoltaic applications, because they combine the robust and tunable optical properties of inorganic semiconductors with the processability of organic thin films. In particular, cadmium selenide (CdSe) quantum dots coordinated with oligo-(phenylene vinylene) ligands have displayed a number of hybrid optical properties that make them particularly well-suited to these applications. When probed on an individual particle level, these so-called CdSe-OPV nanostructures display a number of surprising photophysical characteristics, including strong quenching of fluorescence from coordinating ligands, enhanced emission from the CdSe quantum dot core, suppression of fluorescence intermittency, and photon antibunching, all of which make them attractive in the applications described above. By correlating fluorescence properties with atomic force microscopy, the effects of ligands on quantum dot luminescence are elucidated. In addition, recent studies on individual CdSe-OPV nanostructures have revealed a strong electronic coupling between the coordinating ligands and the nanocrystal core. These studies have shown that excitations in the organic ligands can strongly affect the electronic properties of the quantum dot, leading to linearly polarized optical transitions (both in absorption and emission) and polarization-modulated shifts in band edge emission frequency. These polarization effects suggest exciting new uses for these nanostructures in applications that demand the robust optical properties of quantum dots combined with polarization-switchable control of photon emission.
|
249 |
Regulation Analysis of DNA G-quadruplex and i-Motif bySingle-Molecule Laser TweezersCui, Yunxi 30 November 2016 (has links)
No description available.
|
250 |
Uranium(VI), Thorium(IV) and Scandium(III) Complexes of TropoloneMaludzinski, Miron J. 08 1900 (has links)
<p> New complexes formed between U(VI), Th(IV) and Sc(III) and tropolone have been prepared. These include the solvates UO2T2⋅X and ThT4⋅X (T = the tropolone anion; X =H2O and CH3OH), and the unsolvated chelate Sc3⋅. Some U(VI), Th(IV) and Sc(III)
tropolonates reported in the literature have been re-examined and found to be incorrectly formulated.</p> <p> The adduct chelates UO2T2⋅HT, ScT3⋅HT and the previously unreported
ThT4⋅HT have been prepared. Evidence has been presented for hydrogen-bonding in the additional monodentate tropolone ligand.</p> <p> The thermal conversion of the above solvates and adducts to yield UO2T2, ThT4 and ScT3 has been described.</p> <p> The ability of tropolone and other bidentate ligands to displace the water molecule in UO2T2⋅H2O and ThT4⋅H2O, and the addition of such ligands to ScT3, has been studied.</p> / Thesis / Master of Science (MSc)
|
Page generated in 0.0397 seconds