• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 637
  • 101
  • 78
  • 72
  • 37
  • 10
  • 9
  • 9
  • 9
  • 7
  • 4
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 1188
  • 518
  • 224
  • 191
  • 183
  • 157
  • 141
  • 137
  • 112
  • 112
  • 111
  • 103
  • 97
  • 96
  • 96
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
201

Samarium Oxide Based Nanomaterials for Heterogeneous Catalysis

Hodgson, Gregory K. 19 June 2018 (has links)
The emergence of unique or enhanced physical, chemical and optical material properties at the nanoscale underlies the swift rise of nanomaterials science over recent decades. Within this interdisciplinary field, catalysis performed by nanomaterials (i.e. nanocatalysis) is one area where differences between nanoscale and bulk material properties offer particularly attractive opportunities for application. The consequent pursuit of viable nanomaterials with unprecedented catalytic activity has inevitably expanded across the periodic table, whereby a number of highly efficient precious metal, metal oxide and composite nanostructured catalysts have been developed for a wide range of synthetic organic and inorganic transformations. The lanthanide series has not been excluded from this search, but is still underrepresented in catalysis despite some rich chemistry and reactivity which sets these elements apart from many other metals. More recently however, the necessary paradigm shift away from commonly utilized but expensive, potentially toxic precious metal catalysts, and toward more sustainable alternatives, has seen an upsurge in the development of novel nanomaterials for heterogeneous catalysis: the general topic of this doctoral thesis. Heterogeneous nanocatalysis offers distinct advantages over homogeneous catalysis. Catalyst recyclability, ease of separation from reaction mixtures, and minimal product contamination all contribute to the higher overall effectiveness of heterogeneous catalysts relative to their homogeneous counterparts. The use of light as an abundant reagent, both in nanomaterial fabrication and for photocatalysis, is another attractive prospect. This dissertation addresses both points, describing the iterative development and application of photochemically-prepared samarium oxide based nanomaterials for heterogeneous catalysis and photocatalysis. Through a series of related peer-reviewed publications and associated commentary, the evolution of the application-driven design of a nanomaterial which is both efficient and effective for a diversity of heterogeneous catalytic and photocatalytic transformations is presented. Major findings include 1) both colloidal and supported samarium oxide nanoparticles can be prepared photochemically and comprise primarily Sm2O3 but may contain localized mixed valences or dynamic surface oxidation states; 2) colloidal samarium oxide nanoparticles possess high activity for Brønsted acid and oxidative catalysis, but recyclability and overall effectiveness is less than optimal due to a combination of polydispersity and size-dependent catalytic activity; 3) a similarly-prepared “second generation” samarium oxide/titanium dioxide nanocomposite presented several advantages over its predecessor, performing highly efficient and effective pure heterogeneous, dual photoredox-Lewis acid catalysis in two different types of synthetically relevant photocyclizations. Effects of different nanoparticle supports, rare insights into the catalytic mechanisms and behaviour of these nanomaterials‒obtained at the single molecule level by innovative application of Total Internal Reflection Fluorescence Microscopy (TIRFM) to catalysis research‒as well as advances in TIRFM data analysis protocols, are also discussed.
202

Recognition Tunneling: Approaches towards Next Generation DNA Sequencing

January 2011 (has links)
abstract: This thesis describes several approaches to next generation DNA sequencing via tunneling current method based on a Scanning Tunneling Microscope system. In chapters 5 and 6, preliminary results have shown that DNA bases could be identified by their characteristic tunneling signals. Measurements taken in aqueous buffered solution showed that single base resolution could be achieved with economic setups. In chapter 7, it is illustrated that some ongoing measurements are indicating the sequence readout by making linear scan on a piece of short DNA oligomer. However, to overcome the difficulties of controlling DNA especially ssDNA movement, it is much better to have the tunneling measurement incorporated onto a robust nanopore device to realize sequential reading of the DNA sequence while it is being translocated. / Dissertation/Thesis / Ph.D. Physics 2011
203

IGPR-1 is a novel adhesion molecule involved in colorectal tumor growth

Woolf, Nicholas Taylor 08 April 2016 (has links)
Colorectal cancer (CRC) is among the most prevalent and lethal cancers in the United States. The mechanisms by which tumor cells sense their microenvironment have profound importance in driving the progression of malignancy and evasion from treatment. Specialized microenvironment-sensing cell surface receptors such as cell adhesion molecules allow tumor cells to survey and respond to their microenvironment. We have recently identified a novel cell adhesion molecule named immunoglobulin-containing and proline-rich receptor 1 (IGPR-1) that is normally expressed in both endothelial and epithelial human cell types; however, its potential role in human malignancy remains unknown. To investigate the role IGPR-1 plays in CRC tumor growth, we overexpressed IGPR-1 in human HT29 and HCT116 colon adenocarcinoma cells and examined the effect of IGPR-1 on tumor growth and the mechanisms involved in a cell culture system. The data demonstrate that overexpression of IGPR-1 enhances CRC cell proliferation and survival in vitro. Furthermore, we demonstrate that the extracellular domain of IGPR-1 is required for its ability to support tumor growth. While deletion of the extracellular domain of IGPR-1 impaired its ability to promote tumor cell survival, stimulation of the chimeric IGPR-1 consisting of the extracellular domain of human colony stimulating factor-1 receptor (CSF-1R) fused to the transmembrane and cytoplasmic domains of IGPR-1 promoted tumor cell survival. Additionally, the presence of serine 186 and 220 in the cytoplasmic domain is important for IGPR-1 activity in tumor cells. This work identifies IGPR-1 as an important protein in the regulation of CRC cell growth and survival, and this makes it a possible therapeutic target in the clinical management of CRC.
204

Aggregation of alpha-synuclein using single-molecule spectroscopy

Iljina, Marija January 2017 (has links)
The aggregation of alpha-synuclein (αS) protein from soluble monomer into solid amyloid fibrils in the brain is associated with a range of devastating neurodegenerative disorders such as Parkinson’s disease. Soluble oligomers formed during the aggregation process are highly neurotoxic and are thought to play a key role in the onset and spreading of disease. Despite their importance, these species are difficult to study by conventional experimental approaches owing to their transient nature, heterogeneity, low abundance and a remarkable sensitivity of the oligomerisation process to the chosen experimental conditions. In this thesis, well-established single-molecule techniques have been utilised to study the aggregation and oligomerisation of αS in solution.
205

Photophysics of Symmetric and Asymmetric Cyanines in Solution and Conjugated to Biomolecules

January 2017 (has links)
abstract: Fluorescence spectroscopy is a powerful tool for biophysical studies due to its high sensitivity and broad availability. It is possible to detect fluorescence from single molecules allowing researchers to see the behavior of subpopulations whose presence is obscured by “bulk” collection methods. The fluorescent probes used in these experiments are affected by the solution and macromolecular environments they are in. A misunderstanding of a probe’s photophysics can lead researchers to assign observed behavior to biomolecules, when in fact the probe is responsible. On the other hand, a probe’s photophysical behavior is a signature of the environment surrounding it; it can be exploited to learn about the biomolecule(s) under study. A thorough examination of a probe’s photophysics is critical to data interpretation in both cases and is the focus of this work. This dissertation investigates the photophysical behavior of symmetric and asymmetric cyanines in a variety of solution and biomolecular environments. Using fluorescent techniques—such as time-correlated single photon counting (TCSPC) and fluorescence correlation spectroscopy (FCS)—it was found that cyanines are influenced by the local environment. In the first project, the symmetric cyanines are found to be susceptible to paramagnetic species, such as manganese(II), that enhance the intersystem crossing (ISC) rate increasing triplet blinking and accelerating photobleaching. Another project found the increase in fluorescence of Cy3 in the protein induced fluorescence enhancement (PIFE) technique is due to reduced photoisomerization caused by the proximity of protein to Cy3. The third project focused on asymmetric cyanines; their photophysical behavior has not been previously characterized. Dy630 as a free dye behaves like Cy3; it has a short lifetime and can deactivate via photoisomerization. Preliminary experiments on Dy dyes conjugated to DNA show these dyes do not photoisomerize, and do not show PIFE potential. Further research will explore other conjugation strategies, with the goal of optimizing conditions in which Dy630 can be used as the red-absorbing analogue of Cy3 for PIFE applications. In summary, this dissertation focused on photophysical investigations, the understanding of which forms the backbone of rigorous fluorescent studies and is vital to the development of the fluorescence field. / Dissertation/Thesis / Doctoral Dissertation Chemistry 2017
206

Heteroleptic thorium terphenolate complexes for small molecule activation

McKinven, Jamie January 2016 (has links)
The chemistry and physical properties of actinide complexes has become increasingly significant and relevant since the dawn of the nuclear age. In addition to increasing the potency of nuclear power and the safety and disposal of its subsequent waste products, exploration of the chemistry of actinide complexes provides a fascinating insight into the increased complexity and divergence of reactivity of these complexes when compared to transition metal complexes. Chapter One provides a brief introduction to the chemistry of actinides and in particular, the major focus of this work, of thorium. This is followed by a survey of examples of rare examples of thorium complexes with a formal oxidation state other than Th (IV). Following this is a review of selected examples of thorium (IV) complexes exhibiting unusual reactivity surveying thorium hydride and alkyl complexes initially. This progresses into reviewing the chemistry of thorium complexes containing multiple bonds to non-metal atoms, beginning with carbon atoms and then progressing to atoms in the chalcogen and pnictogen groups. The introduction finishes with an investigation into the properties of the terphenolate ligands used in this study, including examples of unusual complexes that they have been shown to stabilise. In Chapter Two, an exploration into the catalytic activity of fairly simple actinide amide catalysts, N”2Th (IV) {k2-N(SiMe3)SiMe2CH2, N”2U (IV) {k2-N(SiMe3)SiMe2CH2} and UN”3, upon terminal acetylenes is presented. The chapter begins with a brief introduction summarising the previous reactivity observed in the catalysis of terminal acetylenes, with particular focus on actinide-based catalyst mediated reactions. The catalytic results on a variety of terminal acetylenes with different steric and electronic properties is then reported upon. It is found that high conversions and selectivities can be achieved upon optimisation of the catalytic process. It was also found that the different catalysts and substrates favoured different products, with selective oligomerisation and cyclotrimerisation reactions observed. The differing reactivities lend support to the role of f-electrons upon the catalytic route of the reaction. Conclusions are discussed at the end of the chapter. In Chapter Three, the synthesis and characterisation of heteroleptic terphenolate thorium chloride complexes and their subsequent reactivity was investigated. The synthesis and characterisation of ThCl2(OTerMes)2DME and ThCl2(OTerMes)2(H2O)3 are initially described. The reactivity of these complexes favoured transmetallation of the terphenolate ligands, with the complexes; [Li(OTerMes)THF]2, [Li(OTerMes)]2THF, μ3- (TerMesO)μ3-(CH2SiMe3)3Li4, LiAlH2(OTerMes)2, [(THF)K(OTerMes)]2, MgCl(OTerMes)(THF)2, MgBr(OTerMes)(THF)2 and Fe(OTerMes)2(py)2 synthesised and characterised from reactions attempting to transform the ancillary chlorido-ligands. The reactivity of ThCl2(OTerMes)2DME was found to not be solely transmetallation of the terphenolate ligands as elucidated by the synthesis and characterisation of [Th(OTerMes)2(Cl)2(4,4’- bipyridyl)1.5]∞ and [MgTh2μ2-Cl2μ3-Cl(OTerMes)2(C4H7)2μ-η3:η3(C4H7)H]. The synthesis of [MgTh2μ2-Cl2μ3-Cl(OTerMes)2(C4H7)2μ-η3:η3(C4H7)H] was found to proceed via a reductive elimination route with concomitant formation of a terphenolate transmetallation product Mg(OTerMes)2(THF)2. The formation of[Th(OTerMes)2(Cl)2(4,4’- bipyridyl)1.5]∞ was achieved via reaction with the Lewis base 4-4’ bipyridine. Reactions attempting to form heteroleptic uranium terphenolate complexes were also detailed. Conclusions are discussed at the end of the chapter. In Chapter Four, the synthesis and characterisation of heteroleptic terphenolate thorium borohydride complexes and their subsequent reactivity was investigated. It was found that the conversion of ThCl2(OTerMes)2DME to Th(BH4)2(OTerMes)2DME proceeded smoothly using a precedented reaction route. In contrast to ThCl2(OTerMes)2DME, reaction with a Lewis acid was found to result in abstraction of the solvating DME molecule, resulting in the synthesis and characterisation of Th(BH4)2(OTerMes)2. In similarity to ThCl2(OTerMes)2DME, Th(BH4)2(OTerMes)2DME was found to react with a Lewis base (4-4’ bipyridine) to form Th(BH4)2(OTerMes)2(4,4’ bipyridine)∞. However, despite the increased robustness and versatility of the borohydride complexes, transmetallation of the terphenolate complexes remained an issue as shown by the synthesis and characterisation of Mg(OTerMes)((μ-H)3BH)THF)2. Th(BH4)2(OTerMes)2 was found to be able to facilitate small molecule activation in a variety of substrates, encompassing CO, CO2 and CS2 amongst others. In most cases this small molecule activation favoured the formation of BMe3, with the concomitant formation of HB(OTerMes)2 in the case of CO2 and CS2. Attempts at catalysis of isonitriles and terminal acetylenes by Th(BH4)2(OTerMes)2 are presented with mixed results. Conclusions are discussed at the end of the chapter. In Chapter Five, investigations into the effects of changing the donor atom of the terphenyl moiety were probed. The chapter began by examining the differing properties of a phosphorous atom acting as a ligating atom, as opposed to the oxygen atom seen in Chapters Three and Four. The chapter continued by detailing the result of reactions attempting to synthesise and characterise terphenyl phosphino-actinide complexes. It was found that in the case of actinides with easily accessible lower oxidation states, i.e. U (IV), that reductive elimination was favoured, culminating in the isolation of (TerMesPH)2. Following this result attempts were made to modify the ligand system in an attempt to divert the reaction away from this product, in the hope of isolating a phosphino-actinide complex. Reactions attempting to ligate the terphenyl moiety via the aryl α-carbon to thorium were also detailed, resulting in radicular degeneration and the isolation of nBuTerTrip and ClTerTrip. Conclusions are discussed at the end of the chapter. Experimental and characterising data are provided in Chapter Six.
207

Towards Single Molecule DNA Sequencing

January 2013 (has links)
abstract: Single molecule DNA Sequencing technology has been a hot research topic in the recent decades because it holds the promise to sequence a human genome in a fast and affordable way, which will eventually make personalized medicine possible. Single molecule differentiation and DNA translocation control are the two main challenges in all single molecule DNA sequencing methods. In this thesis, I will first introduce DNA sequencing technology development and its application, and then explain the performance and limitation of prior art in detail. Following that, I will show a single molecule DNA base differentiation result obtained in recognition tunneling experiments. Furthermore, I will explain the assembly of a nanofluidic platform for single strand DNA translocation, which holds the promised to be integrated into a single molecule DNA sequencing instrument for DNA translocation control. Taken together, my dissertation research demonstrated the potential of using recognition tunneling techniques to serve as a general readout system for single molecule DNA sequencing application. / Dissertation/Thesis / Ph.D. Biochemistry 2013
208

Exploring Developmental Mechanisms and Function of Drosophila Motoneuron Dendrites with Targeted Genetic Manipulation of Dscam

January 2013 (has links)
abstract: Specific dendritic morphologies are a hallmark of neuronal identity, circuit assembly, and behaviorally relevant function. Despite the importance of dendrites in brain health and disease, the functional consequences of dendritic shape remain largely unknown. This dissertation addresses two fundamental and interrelated aspects of dendrite neurobiology. First, by utilizing the genetic power of Drosophila melanogaster, these studies assess the developmental mechanisms underlying single neuron morphology, and subsequently investigate the functional and behavioral consequences resulting from developmental irregularity. Significant insights into the molecular mechanisms that contribute to dendrite development come from studies of Down syndrome cell adhesion molecule (Dscam). While these findings have been garnered primarily from sensory neurons whose arbors innervate a two-dimensional plane, it is likely that the principles apply in three-dimensional central neurons that provide the structural substrate for synaptic input and neural circuit formation. As such, this dissertation supports the hypothesis that neuron type impacts the realization of Dscam function. In fact, in Drosophila motoneurons, Dscam serves a previously unknown cell-autonomous function in dendrite growth. Dscam manipulations produced a range of dendritic phenotypes with alteration in branch number and length. Subsequent experiments exploited the dendritic alterations produced by Dscam manipulations in order to correlate dendritic structure with the suggested function of these neurons. These data indicate that basic motoneuron function and behavior are maintained even in the absence of all adult dendrites within the same neuron. By contrast, dendrites are required for adjusting motoneuron responses to specific challenging behavioral requirements. Here, I establish a direct link between dendritic structure and neuronal function at the level of the single cell, thus defining the structural substrates necessary for conferring various aspects of functional motor output. Taken together, information gathered from these studies can inform the quest in deciphering how complex cell morphologies and networks form and are precisely linked to their function. / Dissertation/Thesis / Ph.D. Neuroscience 2013
209

Design and Synthesis of Lanthanide Single-Molecule Magnets Using the Schiff Base Approach

Lacelle, Thomas January 2017 (has links)
Single-Molecule Magnets (SMMs) are discrete molecules that exhibit slow relaxation of magnetization. Unlike conventional magnets that rely on the long range magnetic ordering in the form of domains, these molecules act as magnets independently, that is without the influence of neighbouring molecules. SMMs have intrigued physicists and chemists alike for over twenty years with their potential future applications in data storage quantum computing, and with this communal interest there has been significant collaboration between the two fields of research. SMMs have brought forth an opportunity for coordination chemists to muster their creativity and synthetic expertise in the rational design and development of these magnetic materials. From these new and fascinating compounds, both experimental and theoretical physicists have sought to develop and refine our understanding of the aspects of these molecular magnets in order to improve their performance at higher temperatures. In this work, new topologies for lanthanide complexes are explored using a novel Schiff base ligand. The magnetic properties of dinuclear, tetranuclear and octanuclear lanthanide complexes are discussed and correlated to their structural properties. The rational design of tetrazine-based Schiff base ligands for magnetic studies is also discussed in hopes of developing high performance SMMs.
210

Localizing and tracking of fluorescent molecules with minimal photon fluxes

Eilers, Yvan 07 February 2017 (has links)
No description available.

Page generated in 0.0541 seconds