• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 637
  • 101
  • 78
  • 72
  • 37
  • 10
  • 9
  • 9
  • 9
  • 7
  • 4
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 1188
  • 518
  • 224
  • 191
  • 183
  • 157
  • 141
  • 137
  • 112
  • 112
  • 111
  • 103
  • 97
  • 96
  • 96
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
191

Visualizing Invisibles with Single-molecule Techniques: from Protein Folding to Clinical Applications

Mazouchi, Amir Mohammad 08 August 2013 (has links)
Single-molecule fluorescence spectroscopy techniques such as Fluorescence Correlation Spectroscopy (FCS) and single-molecule Förster Resonance Energy Transfer (smFRET) not only possess an unprecedented high sensitivity but also have high temporal and spatial resolution. Therefore, they have an immense potential both in investigation of fundamental biological principles and in clinical applications. FCS analyses are based on both theoretical approximations of the beam geometry and assumptions of the underlying molecular processes. To address the accuracy of analysis, firstly the experimental conditions that should be fulfilled in order to obtain reliable physical parameters are discussed and the input parameters are carefully controlled accordingly to demonstrate the performance of FCS measurements on our home-built confocal multiparameter photon-counting microscope in several in vitro and in-vivo applications. Secondly, we performed a comprehensive FCS analysis of rhodamine family of dyes to evaluate the validity of assigning the correlation relaxation times to the time constant of conformational dynamics of biomolecules. While it is the common approach in literature our data suggests that conformational dynamics mainly appear in the correlation curve via modulation of the dark states of the fluorophores. The size and shape of the folded, unfolded and chemically-denatured states of the N-terminal Src-homology-3 of downstream of receptor kinases (DrkN SH3) were investigated by FCS and smFRET burst experiments. Based on the data, we conclude that a considerable sub-population of the denatured protein is in a closed loop state which is most likely formed by cooperative hydrogen bonds, salt bridges and nonpolar contacts. As a clinical application, we developed and characterized an ultrasensitive capillary electrophoresis method on our multiparameter confocal microscope. This allowed us to perform Direct Quantitative Analysis of Multiple microRNAs (DQAMmiR) with about 500 times better sensivity than a commercial instrument. Quite remarkably, we were able to analyze samples of cell lysate down to the contents of a single cell.
192

Targeting Aberrant STAT3 Signaling as a Therapeutic Strategy for Multiple Myeloma

Croucher, Danielle 11 July 2013 (has links)
The oncogenic transcription factor STAT3 is aberrantly activated in over 70% of human tumours, including Multiple myeloma (MM). The present studies use both genetic and chemical tools to validate STAT3 as a therapeutic target, and demonstrate the anti-MM activity of a novel small molecule STAT3 inhibitor, BP-4-018. We show that shRNA-mediated STAT3 knockdown induces apoptosis in human myeloma cell lines (HMCLs). We translate these findings to a therapeutically relevant setting by demonstrating the broad anti-MM activity of BP-4-018 against HCMLs and primary patient samples, and demonstrate that BP-4-018 remains active against HMCLs co-cultured with bone marrow stroma. Inhibiting STAT3 via shRNA knockdown and BP-4-018 suppresses STAT3 transcriptional activity and down-regulates anti-apoptotic and proliferative STAT3 target genes. Finally, we show that BP-4-018 has activity in vivo, both alone and combined with subtherapeutic doses of bortezomib, without significant toxicities. Taken together, these data support the utility of STAT3 inhibitors for MM treatment.
193

Microfluidics for Single Molecule Detection and Material Processing

Hong, Sung Min 2012 August 1900 (has links)
In the cancer research, it is important to understand protein dynamics which are involved in cell signaling. Therefore, particular protein detection and analysis of target protein behavior are indispensable for current basic cancer research. However, it usually performed by conventional biochemical approaches, which require long process time and a large amount of samples. We have been developed the new applications based on microfluidics and Raster image Correlation spectroscopy (RICS) techniques. A simple microfluidic 3D hydrodynamic flow focusing device has been developed for quantitative determinations of target protein concentrations. The analyte stream was pinched not only horizontally, but also vertically by two sheath streams by introducing step depth cross junction structure. As a result, a triangular cross-sectional flow profile was formed and the laser was focused on the top of the triangular shaped analyte stream. Through this approach, the target protein concentration was successfully determined in cell lysate samples. The RICS technique has been applied to characterize the dynamics of protein 53 (p53) in living cells before and after the treatment with DNA damaging agents. P53 tagged with Green Fluores-cent Protein (GFP) were incubated with and without DNA damaging agents, cisplatin or eptoposide. Then, the diffusion coefficient of GFP-p53 was determined by RICS and it was significantly reduced after the drug treatment while that of the one without drug treatment was not. It is suggested that the drugs induced the interaction of p53 with either other proteins or DNA. This result demonstrates that RICS is able to detect protein-protein or protein-DNA interactions in living cells and it may be useful for the drug screening. As another application of microfluidics, an integrated microfluidic platform was developed for generating collagen microspheres with encapsulation of viable cells. The platform integrated four automated functions on a microfluidic chip, (1) collagen solution cooling system, (2) cell-in-collagen microdroplet generation, (3) collagen microdroplet polymerization, and (4) incubation and extraction of the microspheres. This platform provided a high throughput and easy way to generate uniform dimensions of collagen microspheres encapsulating viable cells that were able to proliferate for more than 1 week.
194

EGFR and HER2 Targeting for Radionuclide-Based Imaging and Therapy : Preclinical Studies

Nordberg, Erika January 2008 (has links)
The optimal way to detect and treat cancer is to target cancer cells exclusively without affecting the surrounding tissue. One promising approach is to use radiolabelled molecules to target receptors that are overexpressed in cancer cells. Since the epidermal growth factor receptor (EGFR) family is overexpressed in many types of cancer, it is an attractive target for both diagnostic and therapeutic applications. This thesis can be divided into two parts. In part one (paper I), studies were conducted to modulate radionuclide uptake in tumour cells. The results showed that it was possible to modulate the cellular uptake of 125I delivered by trastuzumab (targeting HER2) by adding EGF (targeting EGFR). In part two (papers II-V) a high affinity EGFR-targeting affibody molecule (ZEGFR:955)2 was selected and analysed both in vitro and in vivo. In papers II, III and V, the results obtained when using (ZEGFR:955)2 were compared with those obtained with the two EGFR-binding molecules, EGF and cetuximab. These studies demonstrated that the affibody molecule bound specifically to EGFR (probably to subdomain III) with high affinity (~50 nM in biosensor analysis and ~1 nM in cellular studies) and produced intracellular signalling changes similar to those with cetuximab. In paper IV, in vivo studies were made, demonstrating that [111In](ZEGFR:955)2 gave a tumour-specific 111In uptake of 3.8±1.4% of injected dose per gram tumour tissue, 4 h post-injection. The tumours could be easily visualized with a gamma camera at this time-point. The results of these studies indicated that the affibody molecule (ZEGFR:955)2 is a possible candidate for radionuclide-based imaging of EGFR-expressing tumours. The biological effects of (ZEGFR:955)2 might be of interest for therapy applications.
195

EGFR- and HER2-Binding Affibody Molecules : Cellular studies of monomeric, dimeric and bispecific ligands

Ekerljung, Lina January 2011 (has links)
Abnormal expression and signaling of the ErbB receptors is associated with the development and progression of several forms of cancer. In this thesis, new ErbB-targeting affibody molecules are evaluated regarding their cellular effects in vitro. Since ligand binding to an ErbB receptor might have an impact on the cell it is important to be aware of these effects as they may have consequences for the continued growth of the tumor when used in vivo. The affibody molecules are intended for tumor targeting with the prospect of clinical use in imaging or therapy. Three types of affibody molecules were studied, HER2-binding, EGFR-binding and bispecific binders that target both EGFR and HER2. The HER2-targeting (ZHER2:342)2 showed promising characteristics. It sensitized SKBR-3 cells to irradiation and decreased cell growth to the same extent as the clinically approved antibody Herceptin. The monomeric version, ZHER2:342, did not induce any large effects on intracellular signaling or biological outcome. This makes (ZHER2:342)2 interesting for therapy purposes, while ZHER2:342 may be better suited for imaging. The bispecific affibody molecules were all able to simultaneously bind to both EGFR and HER2, but none of the six constructs resulted in any large effects on cellular outcome. Interestingly, all three monovalent binders are more functional when positioned at the N-terminal part of the construct and the (S4G)3 linker renders higher affinity of the bispecific binders compared to (G4S)3. Tumors that co-express several ErbB receptors are often more aggressive and associated with a worse prognosis, suggesting that the total ErbB expression pattern might be more informative than the expression level of one receptor regarding cancer prognosis and prediction of response to targeted therapies. Bispecific ligands could thus be used as imaging agents with prognostic value. Another aspect of dual targeting is the possibility of increased tumor specificity since tumors are more likely than healthy tissue to express high amounts of two receptors.
196

Experimental Studies of Ion-Neutral Chemistry Related to the Extraterrestrial Environment

Edwards, Samuel Joseph January 2009 (has links)
Kinetic data is presented for a variety of ion-neutral reactions which are relevant to the atmosphere of Titan and to the chemistry occurring in interstellar clouds. The data were recorded with a Selected Ion Flow Tube (SIFT) operating at room temperature (294 ± 4 K) and at a pressure of 0.46 Torr. Results of the recent Cassini-Huygens mission to Saturn and Titan have identified several species in the atmosphere of Titan not predicted by pre-Cassini models of the atmosphere. In order to determine the fate of three of these species (methylenimine, propionitrile and cyanodiacetylene) in Titan's ionosphere, their reactivity with the principal ions in Titan's upper ionosphere has been examined. As expected, collision rate proton transfer reactions dominate the chemistry with association channels also observed with many of the hydrocarbon ions. The results of the Cassini mission also identified several individual reactions as being of potential importance to models of Titan's atmosphere and this chemistry has also been examined. The above studies are also relevant to the interstellar medium where each of the neutral reactants have also been detected. The results of some proton transfer equilibrium studies are also presented. The gas phase basicities of propyne and acetylene have been determined to be 681 kJ mol⁻¹ and 617.4 kJ mol⁻¹ respectively. Their relative proton affinities can be estimated from these values. A combined experimental/theoretical study of the proton affinity of cyanodiacetylene (HC₅N) has enabled this value to be estimated at 770 ± 20 kJ mol⁻¹. Details of an attempt to complete the first laboratory measurement of the crucial reaction between H₃⁺ and atomic carbon are presented. The generation of atomic carbon in sufficient quantities for reaction in the SIFT was not possible with the microwave discharge source used. Other generation methods have also been explored with the laser photolysis of carbon suboxide expected to provide a possible solution to the problems encountered. The results of an investigation into the applicability of lithium ions (Li⁺) to SIFT-MS are presented. The lithium ions associated with each of the twenty-one neutral analytes examined to form pseudo-molecular ions. The association reactions were rapid (k ~ 10⁻⁹ cm³ s⁻¹) for large hydrocarbons but were much slower for smaller analytes (k < 10⁻¹¹ cm³ s⁻¹). In order to clarify some unusual experimental observations, the effect of water molecules on the observed chemistry has been examined in detail. The measured chemistry has important consequences for the applicability of Li⁺ to SIFT-MS where the presence and detection of an identifiable ion of the analyte is essential. Details of new SIFT operating software which can be run on a modern computer are given. Mass spectra and kinetic data recorded with the new software are also presented.
197

Experiments with a metastable helium atomic trap /

Colla, Massimiliano. January 2006 (has links)
Thesis (Ph.D.)--Australian National University, 2006.
198

Total electron scattering cross sections of Tetrafluoromethane, Trifluoromethane, Hexafluoroethane, and Octafluorocyclobutane in the energy range 0.10 to 4.50 keV

Palihawadana, Prasanga D. Ariyasinghe, Wickramasinghe M. January 2008 (has links)
Thesis (M.S.)--Baylor University, 2008. / Includes bibliographical references (p. 70-75).
199

A study of ion-molecule reactions in a dynamic reaction cell to improve elemental analysis with inductively coupled plasma-mass spectrometry

Jones, Deanna M. Rago, January 2007 (has links)
Thesis (Ph. D.)--Ohio State University, 2007. / Title from first page of PDF file. Includes bibliographical references (p. 489-516).
200

Structure Determination From Single Molecule X-Ray Scattering Experiments using Photon Correlations

von Ardenne, Benjamin 18 October 2017 (has links)
No description available.

Page generated in 0.0426 seconds