• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 429
  • 137
  • 106
  • 103
  • 73
  • 45
  • 16
  • 13
  • 13
  • 11
  • 6
  • 5
  • 4
  • 4
  • 3
  • Tagged with
  • 1158
  • 145
  • 111
  • 107
  • 87
  • 78
  • 72
  • 66
  • 65
  • 64
  • 63
  • 61
  • 60
  • 55
  • 54
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
221

A Study of Mine-Related Seismicity in a Deep Longwall Coal Mine

Warren, Justin Cable 16 June 2011 (has links)
This study involves seismic monitoring of a deep coal mine. The purpose is to examine the processes responsible for induced seismicity. A seismic network consisting of five three-component short-period seismometers located above the mine recorded the seismic data. The events discussed here occurred from March 1, 2009 until April 7, 2011 during the mining of three longwall panels and the data was telemetered to Blacksburg, Virginia. A correlation equation was developed to relate local magnitude estimated by automatic data processing software in near real-time to seismic moment for well-recorded events. Local magnitude is a relative measure of relative size for a suite of earthquakes, while seismic moment is an objective measure of the actual physical size. Using the calculated seismic moments, we calculated "moment magnitudes" (Mw) for all events, which allowed us to do further studies in terms of their absolute size as a function of both time and space. The results indicate that there are two distinct classes of seismic events at the mine. The first class consists of small (M<=0) earthquakes recorded near the moving mine face. The second class of seismicity occurs in the mined-out "gob" area of the longwall panel at a greater distance behind the moving face. Their occurrence and relation to the mining history, depth of overburden and geology of the roof rocks is a significant interest. Results show that thick overburden due to elevated topography has a positive correlation with the number of seismic events but is not the only controlling factor; other factors include gob size and geological variability. Another important observation is the high seismic attenuation of the rock mass above the mine. This appears to be the result of the fracturing and caving processes associated with the creation of the gob and the resulting subsidence of the ground surface. / Master of Science
222

Four Pools | Four Qualities

Neveu, Christopher Louis 05 February 2018 (has links)
Programatically, this thesis takes the form of a bath house, carved into the side of the Palisades that run along the New River, near Eggleston, VA. Natural springs were formed within the cliffs, that run off into the New River below. The bath house becomes place for patrons to bathe in the mineral baths in a meditative setting. This thesis investigates qualities of light and shadow, and how these elements activate the interior surfaces of form. The architecture is formed by the introduction of light and shadow in ways that are meant to create moments of pause. The building consists of a series of separate pools that allow natural light to enter through various light wells. Architecture is decided in space by light and shadow. This decisiveness requires the existence of rooms. It is upon the interior surfaces that light and shadow become present. The light wells above allow certain sensible interactions to occur between the architecture of the form and the shallow pools of water. / Master of Architecture
223

Design and Qualification of a Test Fixture to Experimentally Determine Global Tire Force Properties

Cauthen, Rea Kimbrell III 03 April 2014 (has links)
The advent of finite element methods has changed the tire industry's design process over the past three decades. Analyses, previously impractical using analytical methods and physically limited by experimental methods, can now be performed using computational methods. This decreases the cost and time associated with bringing a new design to the marketplace; however some physical testing is still required to validate the models. The design, fabrication, installation, and operation of a tire, suspension, and chassis test fixture (TiSCTeF) is detailed as part of this study. This fixture will support the validation of effective, parametric finite element models currently under development, as well as the design and testing of suspension and chassis components for the Virginia Tech Formula SAE team. The fixture is designed to use the Formula SAE race car as the test platform. Initially, the fixture is capable of performing static load-deflection and free-rolling tire tests. Provision has been made in the design for incremental upgrades to support cornering tests and additional instrumentation. An initial load-deflection test has proven that the fixture is capable of creating reproducible data sets. Specific recommendations are made concerning the improvement of data quality for future tests. This study also presents a process for analyzing existing tire cornering data and eliminating anomalies to improve the effectiveness of normalization techniques found in the literature. The process is shown to collapse tire cornering data, which is partially ill- conditioned, onto master curves that consistently display the effect of inclination angle and tire inflation pressure on tire response. / Master of Science
224

Aging effect on successful reactive-recovery from unexpected slips: a 3D lower extremity joint moment analysis

Liu, Jian 05 October 2004 (has links)
The objective of the proposed study was to perform three-dimensional (3D) inverse dynamics analysis to determine lower extremity (ankle, knee and hip) joint moments on previously collected slip perturbation experimental data. In addition, the aging effect on the joint moment generation in both normal walking and reactive-recovery conditions was examined. Dataset collected during previous slip and fall experiments, which were conducted in a typical gait analysis setting, were analyzed in current study. All the participants were subjected to the screening criteria, which defined the successful reactive-recovery (i.e. non-fall trials) based on slip distance, sliding heel velocity, whole body COM velocity, and motion pictures. Nine young and nine old healthy participants, who were identified possessing representative trials, were involved as participants in current study. A local coordinate system was constructed on each joint and each segment of the lower extremity based on available landmarks using the Gram-Schmidt orthogonalization algorithm. 3D inverse dynamics was implemented to obtained lower extremity joint moments. Magnitude and timing of obtained joint moment patterns during stance phase were subjected to one and two-way analysis of covariance (ANCOVA) with walking velocity as covariate. The aging effect and gait condition effect were evaluated. Increases in peak joint moment, peak joint power, and joint moment generation ratio were detected in successful reactive-recovery. Distinct age-related joint moment generation strategy was observed through findings of peak joint moment ratio and joint moment generation rate. The elderly, who were able to reactive recover, were found to be as rapid as their younger counterparts in terms of initiating and developing reactive joint moment. It was concluded that ankle joint was critical in balance recovery while hip joint assumed the major responsibility of balance maintenance of upper body during successful reactive-recovery. Increased demand on muscle strength during balance recovery lead to the distinct joint moment generation strategy adopted by the elderly, and confirmed the necessity of lower extremity strength training. In addition, implementation of 3D joint moment analysis was justified in current study and was suggested in future slip and fall researches. / Master of Science
225

A Study Of Effective Moment of Inertia Models for Full-Scale Reinforced Concrete T-Beams Subjected to a Tandem-Axle Load Configuration

Wickline, Joseph Edward 06 January 2003 (has links)
This thesis is a product of the U.S. Army Corp of Engineer's desire to develop a more accurate procedure for estimating the load capacity of an in-service T-beam bridge. A bridge type that is a stumbling block for U.S. Army field engineers due to the unknown amount and placement of the flexural reinforcement in the T-beam girder cross-sections. Personnel from the U.S. Army Corp of Engineer's Waterways Experiment Station in cooperation with personnel from Virginia Tech conceived a procedure that is potentially more accurate, can be quickly executed in the field, and is relatively easy to use by field engineers. In general, the procedure provides a method for transition between the quantity of flexural reinforcement in a reinforced concrete T-beam and the member's actual moment of inertia. Specifically, the goal of this thesis is to evaluate the accuracy of selected, effective moment of inertia models as a component in the proposed analysis procedure. The accuracy of the selected models is evaluated with test data generated from a testing program detailed herein, which load tested full-scale reinforced concrete T-beams. The test specimens were subjected to a closely-spaced, tandem-axle load configuration, a load configuration typical of military equipment. / Master of Science
226

Developing and Validating New Bolted End-Plate Moment Connection Configurations

Jain, Nonish 13 September 2015 (has links)
This research has been aimed to introduce larger moment carrying connections for any type of buildings, in particular the metal building industry. A total of four connection configurations, namely eight-bolt extended four wide, eight-bolt extended stiffened, six bolt flush unstiffened and twelve bolt extended unstiffened, have been investigated. The last two configurations are proposed whereas the first two configurations have been tested before, but the design procedures need to be validated against the test results. Design procedures, namely yield line analysis and bolt force models, were proposed to calculate moment capacity for end-plate yielding, moment capacity at bolt rupture with prying action and moment capacity at bolt rupture without prying action. The calculated values from these procedures were compared with the values obtained from the experimental test data available (whether from the literature or from this testing program). The experimental data from already tested configurations, eight-bolt extended four wide and eight-bolt extended stiffened, was analyzed. It was concluded that for the eight-bolt extended four wide configuration, the experimental values matched with the calculated values. For the eight-bolt extended stiffened configuration reasonable match was found between the experimentally obtained data and theoretically calculated values only for shallower depths. Hence, it was concluded that two deeper tests need to be performed for this configuration. A full-scale testing program was conducted for ten specimens covering three configurations. The two new configurations (six bolt flush unstiffened and twelve bolt multiple row extended unstiffened) were designed for a shallow and deep beam depth and the behavior of each depth observed for a thin end-plate and a thick end-plate respectively (four tests for each configuration). Also, two deep beam tests, one each for thick and thin plate behavior, were done for the eight-bolt extended stiffened configuration. Based on the comparison, it was determined whether the predicted values were in reasonable agreement with the experimental values or not. The design procedures for both the new configurations appear to be validated for a range of design parameters. The calculated moment capacities for bolt rupture, based on the nominal material properties, were found to be safe when compared with the experimentally obtained moments. The calculations for end-plate yield moments was within ±10% of the experimental yield moment. Also, for the deep tests for eight-bolt extended stiffened the yield line analysis seems to be a valid model and the bolt force model appears to be safe in comparison to the experimental values. / Master of Science
227

Mixed Control Moment Gyro and Momentum Wheel Attitude Control Strategies

Skelton, Claude Eugene II 20 January 2004 (has links)
Attitude control laws that use control moment gyros (CMGs) and momentum wheels are derived with nonlinear techniques. The control laws command the CMGs to provide rapid angular acceleration and the momentum wheels to reject tracking and initial condition errors. Numerical simulations of derived control laws are compared. A trend analysis is performed to examine the benefits of the derived controllers. We describe the design of a CMG built using commercial off-the-shelf (COTS) equipment. A mixed attitude control strategy is implemented on the spacecraft simulator at Virginia Tech. / Master of Science
228

Moments in a pavilion

Wu, Hao 29 May 2012 (has links)
This thesis is my answer to the following question: What is a good building? I believe that a good building must have the moments that can touch people. It should have some spiritual qualities. These moments can be achieved by form, meterial, light, details, and color. / Master of Architecture
229

Evaluation of Extended End-Plate Moment Connections Under Seismic Loading

Ryan, John Christopher 21 October 1999 (has links)
An experimental investigation was conducted to study the extended end-plate moment connections subjected to cyclic loading. Seven specimens representing three end-plate moment connection configurations commonly used in the pre-engineered building industry were used. The connections were designed using yield-line theory to predict end-plate yielding and the modified Kennedy method to predict maximum bolt force calculations including prying action. A displacement controlled loading history was used to load the specimens. The maximum moments obtained experimentally and the experimental bolt forces throughout loading were compared with analytical predictions and finite element model results. The inelastic rotation of connections was calculated and conclusions were drawn on the compliance of these connections with current AISC specifications. / Master of Science
230

Redundancy as a critical life event: moving on from the Welsh steel industry through career change

Gardiner, J., Stuart, M., MacKenzie, R., Forde, C., Greenwood, I., Perrett, Robert A. January 2009 (has links)
Yes / This article investigates the process of moving on from redundancy in the Welsh steel industry among individuals seeking new careers. It identifies a spectrum of career change experience, ranging from those who had actively planned their career change, prior to the redundancies, to those ‘at a career crossroads’, for whom there were tensions between future projects, present contingencies and past identities. It suggests that the process of moving on from redundancy can be better understood if we are able to identify, not just structural and cultural enablers and constraints but also the temporal dimensions of agency that facilitate or limit transformative action in the context of critical life events. Where individuals are located on the spectrum of career change experience will depend on the balance of enabling and constraining factors across the four aspects considered, namely temporal dimensions of agency, individuals’ biographical experience, structural and cultural contexts.

Page generated in 0.0474 seconds