Spelling suggestions: "subject:"monitoring"" "subject:"monitoringa""
1 |
Utilizacao de redes neurais artificiais para determinar o tempo de resposta de sensores de temperatura do tipo RTD / Time response of temperature sensors using neural networksSANTOS, ROBERTO C. dos 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:28:08Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T14:01:44Z (GMT). No. of bitstreams: 0 / Dissertacao (Mestrado) / IPEN/D / Instituto de Pesquisas Energeticas e Nucleares - IPEN-CNEN/SP
|
2 |
Utilizacao de redes neurais artificiais para determinar o tempo de resposta de sensores de temperatura do tipo RTD / Time response of temperature sensors using neural networksSANTOS, ROBERTO C. dos 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:28:08Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T14:01:44Z (GMT). No. of bitstreams: 0 / Em um reator nuclear PWR a temperatura do refrigerante do circuito primário e a da água de realimentação são medidas usando RTD (Resistance Temperature Detectors), ou termômetros de resistência. Estes RTDs alimentam os sistemas de controle e segurança da usina e devem, portanto, ser muito precisos e ter bom desempenho dinâmico. O tempo de resposta dos RTDs é caracterizado por um parâmetro denominado de Constante de Tempo, definido como sendo o tempo que o sensor leva para atingir 63,2% do seu valor final após sofrer uma variação de temperatura em forma de degrau. Este valor é determinado em laboratório, porém as condições de operação de reatores nucleares são difíceis de ser reproduzidas. O método LCSR (Loop Current Step Response), ou teste de resposta a um degrau de corrente, foi desenvolvido para medir remotamente o tempo de resposta dos RTDs. A partir desse teste, a constante de tempo do sensor é calculada através de uma transformação LCSR que envolve a determinação das constantes modais do modelo de transferência de calor. Este cálculo não é simples e requer pessoal especializado. Por este motivo, utilizou-se a metodologia de Redes Neurais Artificiais para estimar a constante de tempo do RTD a partir do LCSR. Os testes LCSR foram usados como dados de entrada da RNA; os testes de Imersão Rápida foram usados para determinar a constante de tempo dos sensores, sendo estes os valores desejados de saída da rede. Esta metodologia foi aplicada inicialmente a dados teóricos, simulando dez sensores com diferentes valores de constante de tempo, resultando em um erro médio de aproximadamente 0,74 %. Dados experimentais de 3 diferentes RTDs foram usados para estimar a constante de tempo, resultando em um erro máximo de 3,34 %. Os valores de constante de tempo estimados pelas RNAs foram comparados com aqueles obtidos pelo método tradicional, obtendo-se um erro médio de 18 % o que mostra que as RNAs são capazes de estimar a constante de tempo de uma forma precisa. / Dissertacao (Mestrado) / IPEN/D / Instituto de Pesquisas Energeticas e Nucleares - IPEN-CNEN/SP
|
3 |
Modelagem de estruturas piezelétricas para aplicação em localização de falhas /Marqui, Clayton Rodrigo. January 2007 (has links)
Orientador: Vicente Lopes Júnior / Banca: Amarildo Tabone Paschoalini / Banca: Marcelo Areias Trindade / Resumo: Este trabalho apresenta o estudo e desenvolvimento de técnicas para o monitoramento da integridade estrutural em sistemas inteligentes com sensores e atuadores piezelétricos acoplados. Os índices de sensibilidade estudados e utilizados no monitoramento da estrutura são: índice de falha métrica, calculado diretamente do sinal de impedância elétrica dos sensores/atuadores piezelétricos; índices do sensor, calculados com as normas de sistemas ou com as matrizes grammiana de observabilidade e os índices de entrada, calculados com as matrizes grammianas de controlabilidade. Tais índices são utilizados para detectar e localizar as falhas em aplicações numéricas e experimentais. As normas de sistemas e as matrizes grammianas de controlabilidade e observabilidade são obtidas através de um modelo numérico, como por exemplo, Método dos Elementos Finitos; ou um modelo identificado experimentalmente, via o método de realização para autossistemas, mais conhecido como ERA (Eigensytem Realization Algorithm). Em uma segunda etapa do procedimento proposto, as falhas são quantificadas utilizando Redes Neurais Artificiais, que foram treinadas com as normas de sistemas e com as matrizes grammianas. / Abstract: This work presents the study and development of Structural Health Monitoring techniques for application in intelligent systems with coupled piezoelectric sensors and actuators. The indices of sensitivity for structural monitoring are based on: root-means-square deviation index, directly calculated from electric impedance signal of the piezoelectric sensors/actuators; sensor indices, calculated from system norms or observability grammian matrix, and input index, calculated from controllability grammian matrix. Such indices are used for damage detection and location in numerical and experimental applications. System norms, controllability and observability grammian matrices are obtained through numerical model, as for instance, Finite Element Method; or by experimental identification technique, via Eigensytem Realization Algorithm (ERA). In the second stage of the proposed procedure, damages were quantified using Artificial Neural Networks, that were trained with systems norms and grammian matrices. / Mestre
|
4 |
Modelagem de estruturas piezelétricas para aplicação em localização de falhasMarqui, Clayton Rodrigo [UNESP] 21 September 2007 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:27:14Z (GMT). No. of bitstreams: 0
Previous issue date: 2007-09-21Bitstream added on 2014-06-13T19:35:08Z : No. of bitstreams: 1
marqui_cr_me_ilha.pdf: 2038827 bytes, checksum: 471f672b818089216b3b9afc3b90a230 (MD5) / Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) / Este trabalho apresenta o estudo e desenvolvimento de técnicas para o monitoramento da integridade estrutural em sistemas inteligentes com sensores e atuadores piezelétricos acoplados. Os índices de sensibilidade estudados e utilizados no monitoramento da estrutura são: índice de falha métrica, calculado diretamente do sinal de impedância elétrica dos sensores/atuadores piezelétricos; índices do sensor, calculados com as normas de sistemas ou com as matrizes grammiana de observabilidade e os índices de entrada, calculados com as matrizes grammianas de controlabilidade. Tais índices são utilizados para detectar e localizar as falhas em aplicações numéricas e experimentais. As normas de sistemas e as matrizes grammianas de controlabilidade e observabilidade são obtidas através de um modelo numérico, como por exemplo, Método dos Elementos Finitos; ou um modelo identificado experimentalmente, via o método de realização para autossistemas, mais conhecido como ERA (Eigensytem Realization Algorithm). Em uma segunda etapa do procedimento proposto, as falhas são quantificadas utilizando Redes Neurais Artificiais, que foram treinadas com as normas de sistemas e com as matrizes grammianas. / This work presents the study and development of Structural Health Monitoring techniques for application in intelligent systems with coupled piezoelectric sensors and actuators. The indices of sensitivity for structural monitoring are based on: root-means-square deviation index, directly calculated from electric impedance signal of the piezoelectric sensors/actuators; sensor indices, calculated from system norms or observability grammian matrix, and input index, calculated from controllability grammian matrix. Such indices are used for damage detection and location in numerical and experimental applications. System norms, controllability and observability grammian matrices are obtained through numerical model, as for instance, Finite Element Method; or by experimental identification technique, via Eigensytem Realization Algorithm (ERA). In the second stage of the proposed procedure, damages were quantified using Artificial Neural Networks, that were trained with systems norms and grammian matrices.
|
Page generated in 0.069 seconds