1 |
Méthodes d'éclatement basées sur les distances de Bregman pour les inclusions monotones composites et l'optimisation / Splitting methods based on Bregman distances for composite monotone inclusions and optimizationNguyen, Van Quang 17 July 2015 (has links)
Le but de cette thèse est d'élaborer des méthodes d'éclatement basées sur les distances de Bregman pour la résolution d'inclusions monotones composites dans les espaces de Banach réels réflexifs. Ces résultats nous permettent d'étendre de nombreuses techniques, jusqu'alors limitées aux espaces hilbertiens. De plus, même dans le cadre restreint d'espaces euclidiens, ils donnent lieu à de nouvelles méthodes de décomposition qui peuvent s'avérer plus avantageuses numériquement que les méthodes classiques basées sur la distance euclidienne. Des applications numériques en traitement de l'image sont proposées. / The goal of this thesis is to design splitting methods based on Bregman distances for solving composite monotone inclusions in reflexive real Banach spaces. These results allow us to extend many techniques that were so far limited to Hilbert spaces. Furthermore, even when restricted to Euclidean spaces, they provide new splitting methods that may be more avantageous numerically than the classical methods based on the Euclidean distance. Numerical applications in image processing are proposed.
|
2 |
Solving systems of monotone inclusions via primal-dual splitting techniquesBot, Radu Ioan, Csetnek, Ernö Robert, Nagy, Erika 20 March 2013 (has links) (PDF)
In this paper we propose an algorithm for solving systems of coupled monotone inclusions in Hilbert spaces. The operators arising in each of the inclusions of the system are processed in each iteration separately, namely, the single-valued are evaluated explicitly (forward steps), while the set-valued ones via their resolvents (backward steps). In addition, most of the steps in the iterative scheme can be executed simultaneously, this making the method applicable to a variety of convex minimization problems. The numerical performances of the proposed splitting algorithm are emphasized through applications in average consensus on colored networks and image classification via support vector machines.
|
3 |
Solving systems of monotone inclusions via primal-dual splitting techniquesBot, Radu Ioan, Csetnek, Ernö Robert, Nagy, Erika 20 March 2013 (has links)
In this paper we propose an algorithm for solving systems of coupled monotone inclusions in Hilbert spaces. The operators arising in each of the inclusions of the system are processed in each iteration separately, namely, the single-valued are evaluated explicitly (forward steps), while the set-valued ones via their resolvents (backward steps). In addition, most of the steps in the iterative scheme can be executed simultaneously, this making the method applicable to a variety of convex minimization problems. The numerical performances of the proposed splitting algorithm are emphasized through applications in average consensus on colored networks and image classification via support vector machines.
|
Page generated in 0.081 seconds