• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 1
  • Tagged with
  • 7
  • 7
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Détermination par simulation de lois de commandes optimales d'un moteur asynchrone.

Moumen, Kamal, Unknown Date (has links)
Th. doct. -ing.--Génie électrique--Nancy--I.N.P.L., 1980.
2

Contribution à la modélisation dynamique d'ordre non entier de la machine asynchrone à cage

Canat, Sylvain Faucher, Jean. January 2005 (has links)
Reproduction de : Thèse de doctorat : Génie électrique : Toulouse, INPT : 2005. / Titre provenant de l'écran-titre. Bibliogr. 38 réf.
3

Contribution à l'étude des moteurs asynchrones linéaires

Sabonnadière, Jean-Claude 27 February 1969 (has links) (PDF)
.
4

Finite Element and Electrical Circuit Modelling of Faulty Induction Machines - Study of Internal Effects and Fault Detection Techniques/Modélisation par éléments finis et par équations de circuits des machines asynchrones en défaut - Etude des effets internes et techniques de détection de défauts.

Sprooten, Jonathan 21 September 2007 (has links)
This work is dedicated to faulty induction motors. These motors are often used in industrial applications thanks to their usability and their robustness. However, nowadays optimisation of production becomes so critical that the conceptual reliability of the motor is not sufficient anymore. Motor condition monitoring is expanding to serve maintenance planning and uptime maximisation. Moreover, the use of drive control sensors (namely stator current and voltage) can avoid the installation and maintenance of dedicated sensors for condition monitoring. Many authors are working in this field but few approach the diagnosis from a detailed and clear physical understanding of the localised phenomena linked to the faults. Broken bars are known to modulate stator currents but it is shown in this work that it also changes machine saturation level in the neighbourhood of the bar. Furthermore, depending on the voltage level, this change in local saturation affects the amplitude and the phase of the modulation. This is of major importance as most diagnosis techniques use this feature to detect and quantify broken bars. For stator short-circuits, a high current is flowing in the short-circuited coil due to mutual coupling with the other windings and current spikes are flowing in the rotor bars as they pass in front of the short-circuited conductors. In the case of rotor eccentricities, the number of pole-pairs and the connection of these pole-pairs greatly affect the airgap flux density distribution as well as the repartition of the line currents in the different pole-pairs. These conclusions are obtained through the use of time-stepping finite element models of the faulty motors. Moreover, circuit models of faulty machines are built based on the conclusions of previously explained fault analysis and on classical Park models. A common mathematical description is used which allows objective comparison of the models for representation of the machine behaviour and computing time. The identifiability of the parameters of the models as well as methods for their identification are studied. Focus is set on the representation of the machine behaviour using these parameters more than the precise identification of the parameters. It is shown that some classical parameters can not be uniquely identified using only stator measurements. Fault detection and identification using computationally cheap models are compared to advanced detection through motor stator current spectral analysis. This last approach allows faster detection and identification of the fault but leads to incorrect conclusions in low load conditions, in transient situations or in perturbed environments (i.e. fluctuating load torque and unideal supply). Efficient quantification of the fault can be obtained using detection techniques based on the comparison of the process to a model. Finally, the work provides guidelines for motor supervision strategies depending on the context of motor utilisation.
5

Surveillance des systèmes non linéaires application aux machines électriques /

Christophe, Cyrille. Staroswiecki, Marcel. January 2001 (has links) (PDF)
Thèse de doctorat : Automatique et informatique industrielle : Lille 1 : 2001. / N° d'ordre (Lille) : 2999. Résumé en français et en anglais. Bibliogr. p. 195-200.
6

Modélisation des machines asynchones et synchrones à aimants avec prise en compte des harmoniques d'espace et de temps application à la propulsion marine par POD /

Lateb, Ramdane Meibody-Tabar, Farid January 2006 (has links) (PDF)
Thèse de doctorat : Génie électrique : INPL : 2006. / Titre provenant de l'écran-titre. Bibliogr.
7

Finite element and electrical circuit modelling of faulty induction machines: Study of internal effects and fault detection techniques / Modélisation par éléments finis et par équations de circuits des machines asynchrones en défaut: Etude des effets internes et techniques de détection de défauts

Sprooten, Jonathan 21 September 2007 (has links)
This work is dedicated to faulty induction motors. These motors are often used in industrial applications thanks to their usability and their robustness. However, nowadays optimisation of production becomes so critical that the conceptual reliability of the motor is not sufficient anymore. Motor condition monitoring is expanding to serve maintenance planning and uptime maximisation. Moreover, the use of drive control sensors (namely stator current and voltage) can avoid the installation and maintenance of dedicated sensors for condition monitoring.<p><p>Many authors are working in this field but few approach the diagnosis from a detailed and clear physical understanding of the localised phenomena linked to the faults. Broken bars are known to modulate stator currents but it is shown in this work that it also changes machine saturation level in the neighbourhood of the bar. Furthermore, depending on the voltage level, this change in local saturation affects the amplitude and the phase of the modulation. This is of major importance as most diagnosis techniques use this feature to detect and quantify broken bars. For stator short-circuits, a high current is flowing in the short-circuited coil due to mutual coupling with the other windings and current spikes are flowing in the rotor bars as they pass in front of the short-circuited conductors. In the case of rotor eccentricities, the number of pole-pairs and the connection of these pole-pairs greatly affect the airgap flux density distribution as well as the repartition of the line currents in the different pole-pairs.<p><p>These conclusions are obtained through the use of time-stepping finite element models of the faulty motors. Moreover, circuit models of faulty machines are built based on the conclusions of previously explained fault analysis and on classical Park models. A common mathematical description is used which allows objective comparison of the models for representation of the machine behaviour and computing time.<p><p>The identifiability of the parameters of the models as well as methods for their identification are studied. Focus is set on the representation of the machine behaviour using these parameters more than the precise identification of the parameters. It is shown that some classical parameters can not be uniquely identified using only stator measurements.<p><p>Fault detection and identification using computationally cheap models are compared to advanced detection through motor stator current spectral analysis. This last approach allows faster detection and identification of the fault but leads to incorrect conclusions in low load conditions, in transient situations or in perturbed environments (i.e. fluctuating load torque and unideal supply). Efficient quantification of the fault can be obtained using detection techniques based on the comparison of the process to a model.<p><p>Finally, the work provides guidelines for motor supervision strategies depending on the context of motor utilisation. / Doctorat en Sciences de l'ingénieur / info:eu-repo/semantics/nonPublished

Page generated in 0.0758 seconds