• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 77
  • 11
  • 8
  • 5
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 126
  • 126
  • 62
  • 60
  • 41
  • 37
  • 25
  • 25
  • 24
  • 23
  • 23
  • 22
  • 19
  • 18
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Performance Measurements in Wireless 802 : 11g Multi-Hop Networks

Achleitner, Stefan, Seiss, Wolfgang January 2006 (has links)
This paper deals with performance measurements in 802.11g Wireless Multi-Hop Net- works at different locations. After an introduction to 802.11g Wireless LANs and Wireless Multi-Hop Networks, the testing environment consisting of hardware, soft- ware, configuration, and three different locations is described. Before test series for the actual measurements are defined, carried out reference tests provide reference perfor- mance data and prove that the used hardware is suitable for testing Wireless Multi-Hop Networks. Then the results of the measurements are discussed which show the influ- ence of multiple hops on throughput and latency for single and multi channel Multi-Hop Networks in indoor, outdoor, and urban environment. Finally, an outlook to further tests and improvements of Wireless Multi-Hop Networks is given.
12

Multi-hop Transmission in Millimeter Wave WPAN with Directional Antenna

Qiao, Jian January 2010 (has links)
Millimeter-wave (mmWave) communications is a promising enabling technology for high rate (Giga-bit) multimedia applications. However, because oxygen absorption peaks at 60 GHz, mmWave signal power degrades significantly over long distances. Therefore, a traffic flow transmitting over multiple short hops is preferred to improve the flow throughput. In this thesis, we first design a hop selection metric for the piconet controller (PNC) to select appropriate relay hops for a traffic flow, aiming to improve the flow throughput and balance the traffic loads across the network. We then propose a multi-hop concurrent transmission (MHCT) scheme to exploit the spatial diversity of the mmWave WPAN by allowing multiple communication links to transmit simultaneously. By deriving the probability that two links can transmit simultaneously as a function of link length, the MHCT scheme is capable of improving spatial multiplexing gain in comparison with the single hop concurrent transmission (SHCT) scheme. We theoretically demonstrate that by properly breaking a single long hop into multiple short hops, the time resource can be utilized more efficiently, thus supporting more traffic flows in the network within the same time interval. In addition, the per-flow throughput is obtained analytically. Extensive simulations are conducted to validate the analysis and demonstrate that the proposed MHCT scheme can significantly improve the average traffic flow throughput.
13

Power Allocation Scheme in Multi-Hop MIMO Amplify-and-Forward Relay Networks

Chen, Jing-Yu 11 July 2011 (has links)
With perfect channel state information at all the transmission terminals, the asymptotic capacity of multi-hop multiple-input multiple-output(MIMO) amplify-andforward(AF) relay channels is derived. Although the derivation is based on the assumption of a large number of antennas, simulation results show that the derived expression is surprisingly accurate for even a small number of antennas, and may even be superior to existing results. In addition, based on the asymptotic result, we present different power allocation schemes to (i) minimization the transmit power; (ii) maximization the network throughput; (iii) minimization the transmit power over all source. Fortunately, the proposed power allocation problems can be formulated using geometric programming(GP). Therefore, the optimal power distribution among the multi-hop relay can be obtained efficiently. For multiuser scenarios, since it is possible that the QoS of each user cannot be satisfied simultaneously, we study jointly admission control and power allocation optimization problem. This joint problem is NP-hard. Therefor, we propose an iterative algorithm to reduced the complexity.
14

Cooperative Diversity and Power Consumption in Multi-hop WSN : Effects of node energy on Single Frequency Networks

UL HAQ, ANWAAR, MALIK, HAROON January 2014 (has links)
At the present time, wireless sensor networks are becoming more and more  common and energy consumption is a key factor in the deployment and  maintenance of these networks. This thesis compares non-SFN multi-hop and  a single frequency network (SFN) or cooperative diversity algorithms with  respect to the energy consumed by the nodes. Since the nodes have limited  power capacity it is extremely important to have an efficient algorithm. In  addition, the behaviour of the network when SFN is employed must be  studied and advice offered with regards to improvements in order to achieve  preferential results. The effect on the network regarding macro diversity is  positive but, the battery energy consumption is still higher and has a drainage  effect on the network for simple multi-hop. The report will include  background information regarding mobile ad-hoc networks and the  relationship with cooperative diversity. It will also deal with how different  algorithms affect the energy consumption in multi-hop networks. Simulations  will also be presented in Matlab plots for two single frequency network  scenarios against a simple multi-hop regarding node energy during the  network discovery and decline. Results will include comparative figures which  are followed by a discussion concerning the simulation results and its effects.  The applications for wireless sensor networks include area monitoring,  environmental monitoring, data logging, industrial monitoring, agriculture  and the idea can additionally be used for wireless radio and TV distribution.  The simulations have been conducted for cooperative diversity algorithms  (SFN-A and SFN-D) against an algorithm which does not use cooperative  diversity in Matlab. The node energy consumption is compared for both  scenarios with regards to both  network reachability and decline. The node  power is analysed during the reachability of the network from the start to  attaining 100% of the discovered network. During network decline, the  behaviour of the node energy is studied for algorithms with SFN-A, SFN-D  and non SFN.  Also, the number of times node transmission occurs with  regards to  node discovery is also analysed.
15

Multi-hop Transmission in Millimeter Wave WPAN with Directional Antenna

Qiao, Jian January 2010 (has links)
Millimeter-wave (mmWave) communications is a promising enabling technology for high rate (Giga-bit) multimedia applications. However, because oxygen absorption peaks at 60 GHz, mmWave signal power degrades significantly over long distances. Therefore, a traffic flow transmitting over multiple short hops is preferred to improve the flow throughput. In this thesis, we first design a hop selection metric for the piconet controller (PNC) to select appropriate relay hops for a traffic flow, aiming to improve the flow throughput and balance the traffic loads across the network. We then propose a multi-hop concurrent transmission (MHCT) scheme to exploit the spatial diversity of the mmWave WPAN by allowing multiple communication links to transmit simultaneously. By deriving the probability that two links can transmit simultaneously as a function of link length, the MHCT scheme is capable of improving spatial multiplexing gain in comparison with the single hop concurrent transmission (SHCT) scheme. We theoretically demonstrate that by properly breaking a single long hop into multiple short hops, the time resource can be utilized more efficiently, thus supporting more traffic flows in the network within the same time interval. In addition, the per-flow throughput is obtained analytically. Extensive simulations are conducted to validate the analysis and demonstrate that the proposed MHCT scheme can significantly improve the average traffic flow throughput.
16

Cooperative Diversity in Wireless Transmission: Multi-hop Amplify-and-Forward Relay Systems

CONNE, CHRISTOPHER 14 August 2009 (has links)
A multi-hop, amplify-and-forward (AF), cooperative diversity system with K relays is studied. An accurate approximate expression for the symbol-error-rate (SER) is derived for the multi-hop system. Also, a lower bound for the outage probability of the system, that is tight throughout nearly the entire signal-to-noise ratio (SNR) range, is presented. Neither an SER expression nor an outage probability expression had previously been reported in the literature for the multi-hop system. To assist in the derivation of the SER expression, the cumulative density function (CDF), probability density function (PDF), and moment generating function (MGF) are found for the random variable (RV), Z = X Y / (X + Y + c), where X and Y are RVs which have PDFs that are sums of terms of the form x^n exp(-b x). It is shown that with the CDF, PDF, and MGF of this type of RV, it is possible to derive an expression for the SER of the multi-hop system for several important scenarios with respect to what type of fading is present in the channels of the system. To assist in the derivation of the lower bound of the outage probability, the CDF is found for an interesting new RV, presented in a recursive formula, that is used to represent the upper bound of the instantaneous end-to-end SNR of the multi-hop system. These mathematical results are useful beyond the scope of the multi-hop system researched in this thesis. Also, many of the results found in this thesis for the previously-scarcely-studied multi- hop sytem are shown to be generalizations of results that had been found for the previously-often-studied two-hop, AF, cooperative diversity system with K relays. / Thesis (Master, Electrical & Computer Engineering) -- Queen's University, 2009-08-04 12:02:41.495
17

MIMO Relays for Increased Coverage and Capacity in Broadband Cellular Systems

Jacobson, Kevin Robert Unknown Date
No description available.
18

Multi-hop Localization in Large Scale Deployments

Ibrahim, Walid 01 May 2014 (has links)
The development of Wireless Sensor Networks (WSNs) is enabled by the recent advances in wireless communication and sensing technologies. WSN have a wide range of scientific and commercial applications. In many applications the sensed data is useless if the location of the event is not associated with the data. Thus localization plays a substantial role in WSNs. Increased dependence on devices and sensed data presses for more efficient and accurate localization schemes. In many Internet of Things (IoT) deployments the area covered is large making it impossible to localize all devices and Sensor Networks (SNs) using single-hop localization techniques. A solution to this problem is to use a multi-hop localization technique to estimate devices' positions. In small areas SNs require at least three anchor nodes within their transmission range to estimate their location. Despite numerous existing localization techniques, the fundamental behavior of multi-hop localization is, as yet, not fully examined. Thus, we study the main characteristics of multi-hop localization and propose new solutions to enhance the performance of multi-hop localization techniques. We examine the assumptions in existing simulation models to build a more realistic simulation model, while studying and investigating the behavior of multi-hop localization techniques in large scale deployments before the actual deployment. We find that the introduced error follows the Gaussian distribution, but the estimated distance follows the Rayleigh distribution. We use the new simulation model to characterize the effect of hops on localization in both dense and sparse multi-hop deployments. We show that, contrary to common beliefs, in sparse deployments it is better to use long hops, while in dense deployments it is better to use short hops. Using short hops in dense deployments generates a large amount of traffic. Thus we propose a new solution which decreases and manages the overhead generated during the localization process. The proposed solution decreased the number of messages exchanged by almost 70% for DV-Distance and 55% for DV-Hop. Finally, we utilize mobile anchors instead of fixed anchors and propose a solution for the collinearity problem associated with the mobile anchor and use Kalman Filter (KF) to enhance the overall localization accuracy. Through simulation studies, we show that the scheme using a Kalman Filter decreases the estimation errors than using single direction by 31% and better than using weighted averages by 16% . As well, our new scheme overcomes the collinearity problem that appears from using mobile anchor nodes. / Thesis (Ph.D, Computing) -- Queen's University, 2014-04-30 01:53:55.817
19

TCP Performance in Wireless Mobile Multi-hop Ad Hoc Networks

Westin, Ola January 2003 (has links)
There are many issues that limit the performance of wireless mobile multi-hop ad hoc networks (MANETs). One of them is that TCP is not well adapted to networks where routes can change or disappear often. In this paper the behaviour of a standard TCP implementation is studied in situations typical for MANETs and compared to the behaviour of a partial implementation of a ATCP, a TCP modification that is intended to increase performance in MANETs. Simulations with simple scenarios show that TCP easily creates a full network load which causes send failures and decreased throughput performance. In some cases the partial ATCP implementation increases throughput but more often it causes an increased amount of duplicate retransmissions. In these scenarios it is unlikely that even a complete ATCP implementation would increase throughput performance. A few modifications to ATCP and TCP are analysed. Especially a limit of the congestion window size shows a large throughput increase. The results are inconclusive, the simulations are too simple to show if the results are applicable in more complex scenarios. It is not clear if ATCP actually is useful in a MANET. / Många faktorer begränsar prestandan i trådlösa mobila multi-hopp ad hoc-nätverk (MANET:er). En av dem är att TCP inte är anpassat till nätverk där rutter ofta kan förändras eller försvinna. I den här rapporten studeras hur en vanlig TCP-implementation uppför sig i typiska MANET-situationer. Detta beteende jämförs mot en partiell implementation av ATCP, en TCPmodifiering som är tänkt att öka prestanda i MANET:er. Simuleringar med enkla scenarier visar att TCP lätt genererar en full nätverkslast vilket orsakar misslyckade sändningar och en minskad genomströmningsprestanda. I vissa fall ökar den partiella ATCP-implementationen genomströmningen, men oftare ger den en ökad mängd onödiga omsändningar. I dessa scenarier är det inte troligt att ens en komplett ATCP-implementation skulle öka genomströmningsprestanda. Några mindre förändringar av ATCP och TCP analyseras. Särskilt ger en begränsning av stockningsfönstret en stor ökning av genomströmningen. Resultaten är ofullständiga. Simuleringarna är för enkla för att kunna visa om om resultaten är tillämpliga i mer komplexa scenarier. Det är inte klarlagt ifall ATCP verkligen är användbart i ett MANET.
20

Taxi Hailing System Using Connected Vehicle Technology

Hoque, Mohammad A., Hong, Xiaoyan, Dixon, Brandon 01 January 2014 (has links)
This paper presents an innovative system for taxi hailing service using V2X communication platform. This proposed system does not require any established operational center or explicit prior booking request through central operator like existing automated taxi dispatching systems. Rather, it provides distributed, self-organized and real time service of hailing a taxi cab in urban area. Our proposed application can be implemented using the state of the art DSRC communication platform in both V2V and V2I mode. In this paper, we introduce our designs of the system and the protocols, and present preliminary evaluation results that reveals numerous benefits of implementing this system. Based on the primary results obtained from real world GPS traces, it can be predicted that, our proposed system can significantly increase the availability of taxi cabs while reducing the wait time for the passenger. At the same time, from the perspective of a taxi driver, it can reduce the empty cruising time and increase daily trip count and eventually help increase the revenue of the taxi company.

Page generated in 0.0386 seconds