• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 7
  • 6
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 40
  • 17
  • 14
  • 14
  • 12
  • 11
  • 10
  • 8
  • 8
  • 8
  • 7
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Baseband Signal Processing and Circuit Design for 915 MHz Amplitude Shift Keying Modulation Mode of the IEEE 802.15.4 ¡V 2006 Low Rate-Wireless Personal Area Network

Liao, Kuan-yuen 29 July 2009 (has links)
The IEEE 802.15.4 is defined as a Low-Rate Wireless Personal Area Network, which is also called ZigBee. The characteristics of ZigBee are low power consumption for battery life, extremely low cost, short-range operation. According to 915 MHz Amplitude Shift Keying Modulation part of IEEE 802.15.4 ¡V 2006, we designed transmitter and receiver in base band part. In the later article, we will introduce my algorithm design, the Quantization and the Architecture in hard- ware implementation, the simulations, and the final verifying work of the layout that we did. Finally, we make a conclusion of this thesis, and we bring up the possible improvement in this design. In my algorithm of the ZigBee receiver, I fined a new table to replace the original table of spec IEEE 802.15.4 to solve multi-sequence interference, which can improve the performance about 0.2 to 0.4dB. My algorithm is lower 1.5dB than the Ideal receiver, which simulate in none carrier frequency offset (CFO) and none sample time offset, but both of mine are biggest. Then, my architecture implementation in hardware is lower about 1.5dB than my algorithm. Completed the hardware circuit design and simulations, I applied for a layout in 0.18-um CMOS technology.
2

Design of 60ghz 65nm CMOS power amplifier / Conception d'amplificateur de puissance en technologie CMOS 65nm pour les applications WPAN à 60GHz

Aloui, Sofiane 06 December 2010 (has links)
Le développement d'objets communicants dédiés aux applications Wireless Personal Area Network (WPAN) à 60GHz vise des débits de l'ordre du GBit/sec. Pour satisfaire la contrainte de faible coût, la technologie CMOS silicium est la plus adaptée. L'utilisation de cette technologie est un challenge en soi afin de concilier les aspects « pertes & rendement » vis à vis des contraintes de puissance. Le but de la thèse est de concevoir des amplificateurs de puissance opérant à 60GHz avec la technologie CMOS 65nm de STMicroelectronics. Cette démarche est progressive car il convient d'analyser puis d'optimiser les performances des composants passifs et actifs constituant l'amplificateur de puissance à l'aide des logiciels de simulations électromagnétique et microélectronique. Finalement, des amplificateurs de puissance ont été réalisés et leurs performances répondent au cahier des charges initialement défini. / Telecommunication industry claims for increasing data rate in wireless communication systems. The major demand of high data rate applications concerns a large panel of home multimedia exchanging data especially for the uncompressed HD data transfer. The 7GHz band around 60GHz is free of use and fulfils the short range gigabit communication requirements. CMOS technology is most appropriate since it drives a fast time to market with a low cost for high integration volume. However, the use of CMOS technology is challenging to satisfy loss and performance trade-off under power constraints. This thesis aims at designing power amplifiers operating at 60GHz with 65nm CMOS technology from STMicroelectronics. This approach is progressive because it is necessary to analyze and optimize the performance of passive and active components constituting the power amplifier using electromagnetic and microelectronics software. Finally, power amplifiers have been made. Their performances met specifications originally defined.
3

Implementation of an IEEE 802.15.4 Based MAC/PHY on a FPGA

Giannikouris, Allyson January 2011 (has links)
The IEEE 802.15.4 standard defines the implementation of a Low-Rate Wireless Personal Area Network (WPAN). While the current version of the standard was ratified in 2006, there is still no readily available Medium Access Control (MAC) layer and/or Physical (PHY) layer for Altera Field Programmable Gate Arrays (FPGAs) in the public domain. This research investigates the implementation of the standard using an Altera FPGA for the MAC layer and PHY layer drivers. The Freescale MC13192 transceiver was used for the physical portion of the PHY layer, which includes the RF front end of the system. The purpose of this research was to implement a basic full function device (FFD), which is capable of acting as a node in the network, as well as co-ordinating it. This allows a simple network to be tested by loading the same code on two FPGA boards, with one configured to act as a coordinator and the other as a device. The flexibility of the standard means that there are several implementation choices to be made, each of which limits the compatibility with devices using other implementation options. The implementation and design decisions made in producing a preliminary core are described in detail. The implementation of the MAC layer primitives is discussed at length as these were not available as source code. These primitives are the building blocks for the core functions of the system. Specifically, the functionality of the Energy Detection (ED) scan, stream transmit and stream receive functions are explored in detail. The code has been implemented using C and is run on the Altera Nios II soft-core processor. The work presented here is an initial implementation meant to serve as a foundation for further research. Additional functionality defined by the standard could be added, or optimization of individual functions could be explored. The current implementation also has the potential to serve as the foundation for research into various sensors which may be part of end devices in the network.
4

The Baseband Signal Processing and Circuit Design for 2.45GHz Mode of the IEEE802.15.4 Low Rate-Wireless Personal Area Network (LR-WPAN)

Liu, Tung-yu 11 August 2005 (has links)
The baseband part of IEEE 802.15.4 operated in 2.45 GHz mode is designed and implemented in this essay. First, the features of IEEE 802.15.4 WPAN(Wireless Personal Area Network), PHY layer and MAC Layer are introduced. Then the algorithm and VHDL of the baseband part of transceiver are designed and verified by FPGA board and logical analyzer.
5

The Baseband Signal Processing for 868MHz ASK Mode of the IEEE 802.15.4-2006 Low Rate-Wireless Personal Area Network

Hsu, Guan-Wen 05 August 2009 (has links)
In recent years, the worldwide progress of wireless communication technology has bringing great benefit and convenience to our people¡¦s life. Nowadays, people can use appliances of wireless communication in many fields, such as family-monitoring, automatic system, and smart-type device¡Ketc. However, in order to dealing with the need of low cost and low power communication, the researcher spend many years on developing the specification of IEEE 802.15.4 Low Rate-Wireless Personal Area Network (LR-WPAN) expected be applied in widespread use. In this thesis, we focus on the baseband signal processing for the physical layer specification of the 868/915MHz mode of the IEEE 802.15.4 LR-WPAN. Our design blocks include packet detection, sampling point detection (energy detection), carrier frequency offset (CFO) compensation, carrier phase offset (CPO) compensation, and despreading algorithms. During the process of simulation, we¡¦ll examine whether our design match the criteria of standard such as sensitivity, packet format, and modulation. While our designs achieve the requirement of the standard, we start on quantization. Finally, we¡¦ll realize the algorithm in VHDL and examine it.
6

Implementation of an IEEE 802.15.4 Based MAC/PHY on a FPGA

Giannikouris, Allyson January 2011 (has links)
The IEEE 802.15.4 standard defines the implementation of a Low-Rate Wireless Personal Area Network (WPAN). While the current version of the standard was ratified in 2006, there is still no readily available Medium Access Control (MAC) layer and/or Physical (PHY) layer for Altera Field Programmable Gate Arrays (FPGAs) in the public domain. This research investigates the implementation of the standard using an Altera FPGA for the MAC layer and PHY layer drivers. The Freescale MC13192 transceiver was used for the physical portion of the PHY layer, which includes the RF front end of the system. The purpose of this research was to implement a basic full function device (FFD), which is capable of acting as a node in the network, as well as co-ordinating it. This allows a simple network to be tested by loading the same code on two FPGA boards, with one configured to act as a coordinator and the other as a device. The flexibility of the standard means that there are several implementation choices to be made, each of which limits the compatibility with devices using other implementation options. The implementation and design decisions made in producing a preliminary core are described in detail. The implementation of the MAC layer primitives is discussed at length as these were not available as source code. These primitives are the building blocks for the core functions of the system. Specifically, the functionality of the Energy Detection (ED) scan, stream transmit and stream receive functions are explored in detail. The code has been implemented using C and is run on the Altera Nios II soft-core processor. The work presented here is an initial implementation meant to serve as a foundation for further research. Additional functionality defined by the standard could be added, or optimization of individual functions could be explored. The current implementation also has the potential to serve as the foundation for research into various sensors which may be part of end devices in the network.
7

Univerzální mobilní komunikační platforma pracující s technologií bluetooth / Universal mobile communication platform using the bluetooth technology

Sopko, Richard January 2009 (has links)
This master’s thesis is focused on field of communication technologies in mobile devices in personal WPAN type wireless networks. Work consists of three basic parts. First part provides overview of personal WPAN wireless networks and is specialized on Bluetooth technologies and its opportunities of communication between mobile devices. Second part deals with an opportunity of using programming language Java 2 Micro Edition in work with Bluetooth technology. Key point of this work is third part which includes scheme of conception of a communication platform and creating of application designed for mobile phones. Created application enables communication by means of changing files and written conversation of two or more people in real time by Bluetooth connection.
8

IMPULSIVE NOISE MODELING AND COEXISTENCE STUDY OF IEEE 802.11 AND BLUETOOTH

Karlsson, Carl January 2008 (has links)
<p>This thesis describes the interference problem between IEEE 802.11 and Bluetooth. These well established communication standards are often used together simultaneously. Since both standards operate in the ISM-band at 2.45 GHz, they interfere with each other. In addition to this, interference from e.g. microwave ovens, heating processes, electric motors and cordless phones also occurs on the ISM-band. Due to this interference problem, a model has been developed in MATLAB to further investigate these interferences and the effects for the user.</p><p>The interference is modelled using the well known Class-A model for impulsive noise. The interference model is parameterized in the model and therefore the noise source(s) is described by a set of parameters derived from real measurements. Models for IEEE 802.11 legacy/b and Bluetooth are based on work published on the user community of MATHWORKS. To get a measure of performance, results from the model are presented as BER (Bit Error Rates) and PER (Packet Error Rates). When Bluetooth is used as a voice link, sound quality can also be performance evaluated directly by simply listening to a voice output file. To be able to track down a specific problem cause, measuring tools have also been included in the model to gain insight into what is causing bit/packet error.</p><p>A model describing the interference problem has been developed describing the real world usage of the standards by the use of state machines. Due to the complexity of the problem, and also for the model to be user friendly, this thesis is not composed of a thorough mathematical derivation describing BER probability for different modulation forms. The derivations for these has already been done and is therefore summarized and compared to when the model is validated. The model has been developed as a proof of concept for further work to fully support the current and coming IEEE standards for IEEE 802.11 and Bluetooth.</p>
9

Efficient GTS Allocation Schemes for IEEE 802.15.4

Haque, Syed E 11 April 2012 (has links)
IEEE 802.15.4 is a standard defined for wireless sensor network applications with limited power and relaxed throughput needs. The devices transmit data during two periods: Contention Access Period (CAP) by accessing the channel using CSMA/CA and Contention Free Period (CFP), which consists of Guaranteed Time Slots (GTS) allocated to individual devices by the network coordinator. The GTS is used by devices for cyclic data transmission and the coordinator can allocate GTS to a maximum of only seven devices. In this work, we have proposed two algorithms for an efficient GTS allocation. The first algorithm is focused on improving the bandwidth utilization of devices, while the second algorithm uses traffic arrival information of devices to allow sharing of GTS slots between more than seven devices. The proposed schemes were tested through simulations and the results show that the new GTS allocation schemes perform better than the original IEEE 802.15.4 standard.
10

High Level Model of IEEE 802.15.3c Standard and Implementation of a Suitable FFT on ASIC

Ahmed, Tanvir January 2011 (has links)
A high level model of HSIPHY mode of IEEE 802.15.3c standard has been constructedin Matlab to optimize the wordlength to achieve a specific bit error rate (BER) depending on the application, and later an FFT has been implemented for different wordlengths depending on the applications. The hardware cost and power is proportional to wordlength. However, the main objective of this thesis has been to implement a low power, low area cost FFT for this standard. For that the whole system has been modeled in Matlab and the signal to noise ratio (SNR) and wordlength of the system have been studied to achieve an acceptable BER. Later an FFT has been implemented on 65nm ASIC for a wordlength of 8, 12 and 16 bits. For the implementation, a Radix-8 algorithm with eight parallel samples has been adopted. That reduce the area and the power consumption significantly compared to other algorithms and architectures. Moreover, a simple control has been used for this implementation. Voltage scaling has been done to reduce thepower. The EDA synthesis result shows that for 16bit wordlength, the FFT has 2.64 GS/s throughput, it takes 1.439 mm2 area on the chip and consume 61.51mW power.

Page generated in 0.1458 seconds