• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • Tagged with
  • 6
  • 6
  • 6
  • 6
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Safety-Oriented Task Offloading for Human-Robot Collaboration : A Learning-Based Approach / Säkerhetsorienterad Uppgiftsavlastning för Människa-robotkollaboration : Ett Inlärningsbaserat Tillvägagångssätt

Ruggeri, Franco January 2021 (has links)
In Human-Robot Collaboration scenarios, safety must be ensured by a risk management process that requires the execution of computationally expensive perception models (e.g., based on computer vision) in real-time. However, robots usually have constrained hardware resources that hinder timely responses, resulting in unsafe operations. Although Multi-access Edge Computing allows robots to offload complex tasks to servers on the network edge to meet real-time requirements, this might not always be possible due to dynamic changes in the network that can cause congestion or failures. This work proposes a safety-based task offloading strategy to address this problem. The goal is to intelligently use edge resources to reduce delays in the risk management process and consequently enhance safety. More specifically, depending on safety and network metrics, a Reinforcement Learning (RL) solution is implemented to decide whether a less accurate model should run locally on the robot or a more complex one should run remotely on the network edge. A third possibility is to reuse the previous output through verification of temporal coherence. Experiments are performed in a simulated warehouse scenario where humans and robots have close interactions. Results show that the proposed RL solution outperforms the baselines in several aspects. First, the edge is used only when the network performance is good, reducing the number of failures (up to 47%). Second, the latency is also adapted to the safety requirements (risk X latency reduced up to 48%), avoiding unnecessary network congestion in safe situations and letting other robots in hazardous situations use the edge. Overall, the latency of the risk management process is largely reduced (up to 68%), and this positively affects safety (time in safe zone increased up to 3:1%). / I scenarier med människa-robotkollaboration måste säkerheten säkerställas via en riskhanteringsprocess. Denna process kräver exekvering av beräkningstunga uppfattningsmodeller (t.ex. datorseende) i realtid. Robotar har vanligtvis begränsade hårdvaruresurser vilket förhindrar att respons uppnås i tid, vilket resulterar i osäkra operationer. Även om Multi-access Edge Computing tillåter robotar att avlasta komplexa uppgifter till servrar på edge, för att möta realtidskraven, så är detta inte alltid möjligt på grund av dynamiska förändringar i nätverket som kan skapa överbelastning eller fel. Detta arbete föreslår en säkerhetsbaserad uppgiftsavlastningsstrategi för att hantera detta problem. Målet är att intelligent använda edge-resurser för att minska förseningar i riskhanteringsprocessen och följaktligen öka säkerheten. Mer specifikt, beroende på säkerhet och nätverksmätvärden, implementeras en Reinforcement Learning (RL) lösning för att avgöra om en modell med mindre noggrannhet ska köras lokalt eller om en mer komplex ska köras avlägset på edge. En tredje möjlighet är att återanvända sista utmatningen genom verifiering av tidsmässig koherens. Experimenten utförs i ett simulerat varuhusscenario där människor och robotar har nära interaktioner. Resultaten visar att den föreslagna RL-lösningen överträffar baslinjerna i flera aspekter. För det första används edge bara när nätverkets prestanda är bra, vilket reducerar antal fel (upp till 47%). För det andra anpassas latensen också till säkerhetskraven (risk X latens reducering upp till 48%), undviker onödig överbelastning i nätverket i säkra situationer och låter andra robotar i farliga situationer använda edge. I det stora hela reduceras latensen av riskhanterings processen kraftigt (upp till 68%) och påverkar på ett positivt sätt säkerheten (tiden i säkerhetszonen ökas upp till 4%).
2

A Highly-Available Multiple Region Multi-access Edge Computing Platform with Traffic Failover

Sulaeman, Adika Bintang January 2020 (has links)
One of the main challenges in the Multi-access Edge Computing (MEC) issteering traffic from clients to the nearest MEC instances. If the nearest MECfails, a failover mechanism should provide mitigation by steering the trafficto the next nearest MEC. There are two conventional approaches to solve thisproblem, i.e., GeoDNS and Internet Protocol (IP) anycast. GeoDNS is notfailover friendly because of the Domain Name System (DNS) cache lifetime.Moreover, the use of a recursive resolver may inaccurately translate the IPaddress to its geolocation. Thus, this thesis studies and proposes a highlyavailable MEC platform leveraging IP anycast. We built a proof-of-conceptusing Kubernetes, MetalLB, and a custom health-checker running on theGNS3 network emulator. We measured latency, failure percentage, and MeanTime To Repair (MTTR) to observe the system’s behavior. The performanceevaluation of the proposed solution shows an average recovery time betterthan one second. The number of failed requests and latency overhead growslinearly as the failover time and latency between two MECs increases. Thisthesis demonstrates the effectiveness of IP anycast for MEC applications tosteer the traffic to the nearest MEC instance and to enhance resiliency withminor overhead. / n av de största utmaningarna i Multi-access Edge Computing (MEC) är attstyra trafiken från klienter till närmaste MEC instanser. Om den närmasteMEC misslyckas, bör en failover-mekanism ge begränsning genom att styratrafiken till nästa närmaste MEC. Det finns två konventionella metoder för attlösa detta problem, dvs GeoDNS och IP anycast. GeoDNS är inte failovervänligtpå grund av DNS-cache-livslängd. Dessutom kan användningen aven rekursiv upplösare felaktigt översätta IP-adressen till dess geolokalisering.Således studerar och föreslår denna avhandling en mycket tillgänglig MEC-plattform som utnyttjar IP anycast. Vi byggde ett proof-of-concept medKubernetes, MetalLB och en anpassad hälsokontroll som körs på GNS3-nätverksemulatorn. Vi mätte latens, felprocent och Mean Time To Repair(MTTR) för att observera systemets beteende. Prestationsutvärderingen avden föreslagna lösningen visar en genomsnittlig återhämtningstid som ärbättre än en sekund. Antalet misslyckade förfrågningar och latensomkostnaderväxer linjärt när failover-tiden och latensen mellan två MEC ökar. Den häravhandlingen visar effektiviteten hos IP anycast för MEC-applikationer för attstyra trafiken till närmaste MEC instans och för att förbättra elasticiteten medmindre overhead.
3

Network Slicing to Enhance Edge Computing for Automated Warehouse / Network Slicing för att förbättra Edge Computing för Automated Warehouse

Wei, Xiaoyi January 2022 (has links)
In a previous work, a distributed safety framework supported by edge computing was developed to enable real-time response of robots that collaborate with humans in the Human-Robot Collaboration (HRC) scenario. However, as the number of robots in the automated warehouse increases, the network is easier to induce the congestion. A network infrastructure that can fulfill the automated warehouse needs is therefore desired. This work develops network slicing technology in the aforementioned network infrastructure and investigates its application in the automated warehouse scenario. The goal is to improve the performance of the network through network slicing, in order that it can provide differentiated services to devices in the automated warehouse based on their needs, allowing network resources to be more efficiently allocated. With network optimization, low-latency and high reliability communication of the robot can be achieved in the automated warehouse. The performance of network slicing was compared to the scenario without this technology in the experiments. Specifically, in the standard Wireless Fidelity (Wi-Fi) network scenario without network slicing, all devices and robots will be connected to one channel to send data to the Multi-access Edge Computing (MEC) server. For the network with slicing, we divide it into three slices based on different use cases, including computers, Internet of Things (IoT) devices, and robots. Slices are created by defining multiple Service Set Identifiers (SSIDs) in a single Access Point (AP). Our results show that network slicing technology can significantly improve network performance in the automated warehouse. The network with slicing is superior to that without slicing in terms of latency at different levels of network load, which is reduced by up to 53.6%. The throughput is also increased by up to 33.5% compared to the network without slicing. Meanwhile, the network with slicing can maintain a relatively low error probability of all flows, of which the median value is 0%. It can prove that network slicing technology is beneficial for the automated warehouse network. / Begreppet samarbete mellan människa och robot (HRC) har blivit vanligt förekommande inom modern industri. I det tidigare arbetet presenteras en säkerhetsram som är utrustad med en MEC-server (Multi-access Edge Computing) för att tillhandahålla tillräcklig resurser till roboten som arbetar i det automatiserade lagret med HRC scenario. När antalet robotar i det automatiserade lagret ökar ökar, kommer nätverket att bli en flaskhals. En långsiktig, modern och robust nätverk för automatiserade lager är därför önskvärt för att anpassa sig till eventuella framtida behov. I det här projektet undersöks genomförandet av nätverksindelning i automatiserade lager med HRC-scenario. Målet är att förbättra prestanda för nätverket genom att dela upp nätverket så att det kan tillhandahålla differentierade tjänster till enheter i det automatiserade lagret baserat på utifrån deras behov, vilket gör att nätverksresurserna kan fördelas mer effektivt. Med nätverksoptimering kan kommunikation med låg latenstid och hög tillförlitlighet av roboten kan uppnås i det automatiserade lagret. Vi utförde experiment med två scenarier: standardscenarier med en Wireless Fidelity (Wi-Fi)-nätverk och Wi-Fi-nätverk med nätverksslicing. I standardscenariot för Wi-Fi-nätverk är alla enheter och robotar anslutna till en kanal för att skicka data till MEC-servern. För nätverket med slicing delar vi upp det i tre skivor baserat på olika användningsfall, inklusive datorer, IoT-enheter (Internet of Things) och robotar. Skivorna är skapas genom att definiera flera SSID:er (Service Set Identifiers) i ett enda åtkomstnät. punkt (AP). Våra resultat visar att tekniken för att dela upp nätverk kan förbättra följande avsevärt nätverksprestanda i det automatiserade lagret. Nätet med skivning är överlägset det utan skivning när det gäller latens på olika nivåer av nätverks belastning, som minskas med upp till 53,63 %. Nätet med skivning kan också fortfarande upprätthålla en relativt låg felsannolikhet för att säkerställa nätverkskvaliteten samtidigt som samtidigt som det ger hög genomströmning. Det visar att tekniken för nätverksskivning är fördelaktig för det automatiserade lagernätverket.
4

Belief Rule-Based Workload Orchestration in Multi-access Edge Computing

Jamil, Mohammad Newaj January 2022 (has links)
Multi-access Edge Computing (MEC) is a standard network architecture of edge computing, which is proposed to handle tremendous computation demands of emerging resource-intensive and latency-sensitive applications and services and accommodate Quality of Service (QoS) requirements for ever-growing users through computation offloading. Since the demand of end-users is unknown in a rapidly changing dynamic environment, processing offloaded tasks in a non-optimal server can deteriorate QoS due to high latency and increasing task failures. In order to deal with such a challenge in MEC, a two-stage Belief Rule-Based (BRB) workload orchestrator is proposed to distribute the workload of end-users to optimum computing units, support strict QoS requirements, ensure efficient utilization of computational resources, minimize task failures, and reduce the overall service time. The proposed BRB workload orchestrator decides the optimal execution location for each offloaded task from User Equipment (UE) within the overall MEC architecture based on network conditions, computational resources, and task requirements. EdgeCloudSim simulator is used to conduct comprehensive simulation experiments for evaluating the performance of the proposed BRB orchestrator in contrast to four workload orchestration approaches from the literature with different types of applications. Based on the simulation experiments, the proposed workload orchestrator outperforms state-of-the-art workload orchestration approaches and ensures efficient utilization of computational resources while minimizing task failures and reducing the overall service time.
5

Resource Optimization Strategies and Optimal Architectural Design for Ultra-Reliable Low-Latency Applications in Multi-Access Edge Computing

Shah, Ayub 24 June 2024 (has links)
The evolution and deployment of fifth-generation (5G) and beyond (B5G) infrastructure will require a tremendous effort to specify the design, standards, and manufacturing. 5G is vital to modern technological evolution, including industry 4.0, automotive, entertainment, and health care. The ambitious and challenging 5G project is classified into three categories, which provide an essential supporting platform for applications associated with: Enhanced mobile broadband (eMBB) Ultra-reliable low-latency communication (URLLC) Massive machine-type communication (mMTC) The demand for URLLC grows, particularly for applications like autonomous guided vehicles (AGVs), unmanned aerial vehicles (UAVs), and factory automation, and has a strict requirement of low latency of 1 ms and high reliability of 99.999%. To meet the needs of communication-sensitive and computation-intensive applications with different quality-of-service (QoS) requirements, this evolution focuses on ultra-dense edge networks with multi-access edge computing (MEC) facilities. MEC emerges as a solution, placing resourceful servers closer to users. However, the dynamic nature of processing and interaction patterns necessitates effective network control, which is challenging due to stringent requirements on both communication and computation. In this context, we introduce a novel approach to optimally manage task offloading, considering the intricacies of heterogeneous computing and communication services. Unlike existing methods, our methodology incorporates the number of admitted service migrations and QoS upper and lower bounds as binding constraints. The comprehensive model encompasses agent positions, MEC servers, QoS requirements, edge network communication, and server computing capabilities. Formulated as a mixed-integer linear program (MILP), it provides an optimal schedule for service migrations and bandwidth allocation, addressing the challenges posed by computation-intensive and communication-sensitive applications. Moreover, tailoring to an indoor robotics environment, we explore optimization-based approaches seeking an optimal system-level architecture while considering QoS guarantees. Optimization tools, e.g., ARCHEX, prove their ability to capture cyber-physical systems (CPS) requirements and generate correct-by-construction architectural solutions. We propose an extension in ARCHEX by incorporating dynamic properties, i.e., robot trajectories, time dimension, application-specific QoS constraints, and finally, integrating the optimization tool with a discrete-event network simulator (OMNeT++). This extension automates the generation of configuration files and facilitates result analysis, ensuring a comprehensive evaluation. This part of the work focuses on the dynamism of robots, server-to-service mapping, and the integration of automated simulation. The proposed extension is validated by optimizing and analyzing various indoor robotics scenarios, emphasizing critical performance parameters such as overall throughput and end-to-end delay (E2E). This integrated approach addresses the complex interplay of computation and communication resources, providing a solution for dynamic mobility, traffic, and application patterns in edge server environments.
6

Computing on the Edge of the Network

Mehrabi, Mahshid 15 August 2022 (has links)
Um Systeme der fünften Generation zellularer Kommunikationsnetze (5G) zu ermöglichen, sind Energie effiziente Architekturen erforderlich, die eine zuverlässige Serviceplattform für die Bereitstellung von 5G-Diensten und darüber hinaus bieten können. Device Enhanced Edge Computing ist eine Ableitung des Multi-Access Edge Computing (MEC), das Rechen- und Speicherressourcen direkt auf den Endgeräten bereitstellt. Die Bedeutung dieses Konzepts wird durch die steigenden Anforderungen von rechenintensiven Anwendungen mit extrem niedriger Latenzzeit belegt, die den MEC-Server allein und den drahtlosen Kanal überfordern. Diese Dissertation stellt ein Berechnungs-Auslagerungsframework mit Berücksichtigung von Energie, Mobilität und Anreizen in einem gerätegestützten MEC-System mit mehreren Benutzern und mehreren Aufgaben vor, das die gegenseitige Abhängigkeit der Aufgaben sowie die Latenzanforderungen der Anwendungen berücksichtigt. / To enable fifth generation cellular communication network (5G) systems, energy efficient architectures are required that can provide a reliable service platform for the delivery of 5G services and beyond. Device Enhanced Edge Computing is a derivative of Multi-Access Edge Computing (MEC), which provides computing and storage resources directly on the end devices. The importance of this concept is evidenced by the increasing demands of ultra-low latency computationally intensive applications that overwhelm the MEC server alone and the wireless channel. This dissertation presents a computational offloading framework considering energy, mobility and incentives in a multi-user, multi-task device-based MEC system that takes into account task interdependence and application latency requirements.

Page generated in 0.0989 seconds