• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 25
  • 10
  • 4
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 60
  • 60
  • 16
  • 14
  • 11
  • 9
  • 9
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

System-on-package solutions for multi-band RF front end

Duo, Xinzhong January 2005 (has links)
Advances in microelectronics technology have enabled us to integrate a complex electronic system (such as a radio) on a single chip or in a single package module, known as system-on-chip (SoC) and system-on-package (SoP) paradigms. This brings not only new opportunities for system integration, but also challenges in design and implementation. One of these challenges is how to achieve an optimum total solution of system integration via chip and package co-design, because there is no tool or design methodology available for such kind of optimization. This thesis focuses on innovative multi-band multi-standard radio front-end design and explores a new design methodology. The motivation of developing this design methodology is to achieve an optimum total solution for radio system implementation via chip and package co-design and co-optimization. The methodology starts from RF packaging and components modeling. Necessary models for both on-chip and off-chip passives are developed. Parasitic effects of packages for radio chips are modeled for particular frequencies. Compared with high-speed digital packaging, RF packaging normally deals with narrow band signals. It is possible to absorb some unwanted parasitics by designing proper port matching networks. In addition, cost-performance trade-offs are performed. In this context, we first developed process and technology based cost models, which include parameters like chip real estate, raw materials, package, test and rework. Impact of process variation on final yield has also been considered in the models by using a statistical analysis approach. Performance of different design options is measured by a special FoM (figure-of-merit). Each type of analog/RF circuit (such as LNA, PA and ADC) has its own dedicated FoM. Through a series of cost-performance trade-offs for different on-chip versus off-chip passives and partitions, an optimum total solution is obtained. Finally, this methodology was demonstrated via a number of design examples for multi-band multi-standard radio front-end. The author has explored the optimum solutions for different circuit architectures and process technologies encompassing parallel, concurrent and digitally programmable multi-band radio frond-end blocks. It is interesting to find that, for complex RF circuits like a multi-band multi-standard radio, moving some passives off-chip will have significant cost-savings. In addition to the above contributions, the author has also developed an MCM-D technology on LCP and glass substrates, based on metal deposition and BCB spin-coating at KTH clean room. The author has also performed some preliminary studies on UWB radio for RFID applications. / QC 20101005
12

Mobile Access and Network-Coding in Diverse-Band Wireless Networks: Design and Evaluation

Giannoulis, Anastasios 05 June 2013 (has links)
Wireless networks increasingly utilize diverse spectral bands, which exhibit vast differences in transmission range, bandwidth and available airtime. While tremendous efforts have been devoted to enable efficient mobile access of single-band networks and increase their throughput, e.g., via network coding, such single-band solutions are unfortunately oblivious to the diversity and abundance of the available spectral bands. In this thesis, I present and evaluate novel schemes for mobile access and for throughput increase using network coding, schemes that are designed for diverse-band wireless networks, i.e., networks operating in multiple diverse bands. Specifically, I introduce the first scheme designed for mobile clients to evaluate and select both APs and spectral bands in diverse-band networks. The fundamental problem is that the potentially vast number of spectrum and AP options may render scanning prohibitive. Thus, my key technique is for clients to infer the critical metrics of channel quality and available airtime for their current location and bands using limited measurements collected in other bands and at other locations. I evaluate my scheme via experiments and emulations, which are enabled by a four-band testbed that I deploy. A key finding is that under a diverse set of operating conditions, mobile clients can accurately predict their performance without a direct measurement at their current location and spectral bands. Moreover, I introduce the first band selection schemes designed for diverse-band networks exploiting overheard packets to enable network coding. The main problem is that band selections in such networks are challenged by conflicting factors affecting throughput: while the number of overhearing nodes generally increases with decreasing frequency, channel width and spatial reuse unfortunately decrease. Thus, the key technique of the proposed schemes is to jointly incorporate coding gains, channel width and spatial reuse in band selections. I evaluate these schemes via simulations employing a physical-layer model driven by measurements collected using the deployed four-band testbed. An important finding is that the proposed schemes can outperform coding-oblivious spectrum access in terms of throughput, as their band selection enables more coding opportunities. My work has two key implications. First, it can significantly improve throughput performance in networks enabled by today’s unlicensed spectrum and by the billion-dollar industry of white-space networking. Second, I anticipate that this thesis will highly impact future research, as I open new research areas in a domain that has attracted such tremendous commercial and research interest.
13

Integrated multi-mode oscillators and filters for multi-band radios using liquid crystalline polymer based packaging technoloy

Bavisi, Amit 06 April 2006 (has links)
The objective of the proposed research is to develop novel, fully-packaged voltage controlled oscillators (VCOs), concurrent oscillators, and multi-mode filters using Liquid Crystalline Polymer (LCP) dielectric material that are directly applicable to simultaneous multi-band radio communication. Integrated wireless devices of the near-future will serve more diverse range of applications (computing, voice/video/data communication) and hence, will require more functionality. This research is focused on providing cost-effective and area-efficient solutions for multi-band/multi-mode oscillators and filters using system-on-package (SOP) design methodology. Silicon-based integrated circuits (ICs) provide an economical method of miniaturizing modules and hence, are attractive for multi-band applications. However, fully monolithic solutions are limited, by its high substrate losses, and marginal quality factors (Qs) of the passives, to low profile applications. Furthermore, the VCOs made on conventional packaging technologies are not very cost-effective. This thesis is directed towards developing highly optimized VCOs and filters using LCP substrate for use in multi-mode radio systems. The thesis investigates and characterizes lumped passive components on new LCP based technology feasible for VCO and filter design. The dissertation then investigates design techniques for optimizing both power consumption and the phase noise of the VCOs to be employed in commercial wireless systems. This work then investigates the temperature performance of LCP-based VCOs satisfying military standards. Another aspect of the thesis is the development of dual-band (multi-mode) oscillators. The approach is to employ existing multi-band theories to demonstrate one of the first prototypes of the oscillator. Finally, the design of multi-mode, lumped-element type filters was investigated.
14

NOVEL PLANAR ANTENNA DESIGNS FOR DUAL-BAND OR MULTI-BAND WIRELWSS COMMUNICATIONS

Lee, Gwo-yun 27 May 2004 (has links)
This paper proposes novel PIFA and monopole designs for dual-band or multi-band wireless communications, especially for mobile phones and CF (compact flash) card. The dual-frequency designs for mobile phone mainly utilize one or more metal branch strips to excite two resonant modes. By tuning the dimensions of branch strips, the ratio of the antenna¡¦s first two resonant frequencies can be achieved to be about 2.0, which makes it very promising for 900/1800 MHz operations. In addition, the broadband and quad-band (AMPS/GSM/DCS/PCS) designs for mobile phone application are also proposed. The broadband antenna design, unlike the above-mentioned dual-frequency designs for operating at two separate resonant modes, is more suitable to cover several nearby communication bands (DCS/PCS/UMTS/WLAN 2.45 GHz). The quad-band antenna design utilizes a £k-shape matching bridge to achieve a wider bandwidth both in lower and higher bands. For CF Card application, the triangular chip antenna having one longer and one shorter strip lines can generate the lower and higher modes covering the WLAN 2.4 and WLAN 5.2/5.8 GHz bands. All the antenna designs proposed are very promising to be concealed within the housing of the mobile phones or CF card.
15

Internal Mobile Communication Antennas for Laptop Applications

Kuo, Cheng-Hao 26 June 2007 (has links)
When the conventional mobile communication antennas embedded in the laptop computers, it is difficult to achieve enough bandwidths or a larger antenna size is required for covering the GSM/DCS operation. To overcome this problem, three new mobile communication internal antennas, having multi-band operation capability and suitable to be embedded in the laptop computers are proposed. At first, we introduce a monopole antenna with a shorted parasitic element. This antenna can provide wide bandwidths to cover GSM900, DCS, PCS, and UMTS operations. Then, in order to additionally achieve the GSM850 operation to form the penta-band operation, we present a wideband monopole antenna with a shorted structure. Finally, we propose an open-loop antenna with a shorted parasitic element. The antenna occupies a smaller volume and is capable of providing wide bandwidths to cover GSM850, GSM900, DCS, PCS, and UMTS operations. Detailed antenna designs and experimental results are presented and discussed.
16

System Framework for a Multi-Band, Multi-Mode Software Defined Radio

Thomas, Willie L., II, Berhanu, Samuel, Richardson, Nathan 10 1900 (has links)
ITC/USA 2014 Conference Proceedings / The Fiftieth Annual International Telemetering Conference and Technical Exhibition / October 20-23, 2014 / Town and Country Resort & Convention Center, San Diego, CA / This paper describes a system framework for a multi-band, multi-mode software defined radio (MBMM SDR) being developed for next-generation telemetry applications. The system framework consists of the multi-band front-end (MBFE), the multi-mode digital radio (MMDR), and the configuration and control (C2) sub-systems. The MBFE consists of an L/S/C-band transceiver architecture that provides wideband operation, band selection, and channel tuning. The MMDR consists of the software and firmware components for high-speed digital signal processing for the telemetry waveforms. Finally, the C2 consists of the software and hardware components for system configuration, control and status. The MBFE is implemented as a standalone hardware sub-system, while the MMDR and C2 are integrated into a single hardware subsystem that utilizes state-of-the-art system-on-chip (SoC) technology. Design methodologies, hardware architectures, and system tradeoffs are highlighted to meet next-generation telemetry requirements for improved spectrum efficiency and utilizations. Approved for public release; distribution is unlimited (412TW-PA-14281).
17

A Multi-Band Transceiver Design for L/S/C-Band Telemetry

Thompson, Willie L., II 10 1900 (has links)
ITC/USA 2012 Conference Proceedings / The Forty-Eighth Annual International Telemetering Conference and Technical Exhibition / October 22-25, 2012 / Town and Country Resort & Convention Center, San Diego, California / The Serial Streaming Telemetry infrastructure is being augmented with the Telemetry Network System, which is a net-centric infrastructure requiring bi-directional communications between the test article segment and the ground station segment. As a result, future radio segments must implement transceiver architecture to support bi-directional communications. This paper presents a design methodology for a multi-band transceiver design. The design methodology is based upon the Weaver architecture to provide coarse selection between the telemetry bands. Utilization of the Weaver architecture allowed for the optimization of multiple transmitter and receiver channels into single channels to support the L/S/C-Band frequency allocations. System-level simulation is presented to evaluate the feasibility of the transceiver design for a multi-band, multi-mode software-defined radio (SDR) platform in support of Telemetry Network System.
18

A Fully Integrated Multi-Band Multi-Output Synthesizer with Wide-Locking-Range 1/3 Injection Locked Divider Utilizing Self-Injection Technique for Multi-Band Microwave Systems

Lee, Sang Hun 2012 August 1900 (has links)
This dissertation reports the development of a new multi-band multi-output synthesizer, 1/2 dual-injection locked divider, 1/3 injection-locked divider with phase-tuning, and 1/3 injection-locked divider with self-injection using 0.18-micrometer CMOS technology. The synthesizer is used for a multi-band multi-polarization radar system operating in the K- and Ka-band. The synthesizer is a fully integrated concurrent tri-band, tri-output phase-locked loop (PLL) with divide-by-3 injection locked frequency divider (ILFD). A new locking mechanism for the ILFD based on the gain control of the feedback amplifier is utilized to enable tunable and enhanced locking range which facilitates the attainment of stable locking states. The PLL has three concurrent multiband outputs: 3.47-4.313 GHz, 6.94-8.626 GHz and 19.44-21.42-GHz. High second-order harmonic suppression of 62.2 dBc is achieved without using a filter through optimization of the balance between the differential outputs. The proposed technique enables the use of an integer-N architecture for multi-band and microwave systems, while maintaining the benefit of the integer-N architecture; an optimal performance in area and power consumption. The 1/2 dual-ILFD with wide locking range and low-power consumption is analyzed and designed together with a divide-by-2 current mode logic (CML) divider. The 1/2 dual-ILFD enhances the locking range with low-power consumption through optimized load quality factor (QL) and output current amplitude (iOSC) simultaneously. The 1/2 dual-ILFD achieves a locking range of 692 MHz between 7.512 and 8.204 GHz. The new 1/2 dual-ILFD is especially attractive for microwave phase-locked loops and frequency synthesizers requiring low power and wide locking range. The 3.5-GHz divide-by-3 (1/3) ILFD consists of an internal 10.5-GHz Voltage Controlled Oscillator (VCO) functioning as an injection source, 1/3 ILFD core, and output inverter buffer. A phase tuner implemented on an asymmetric inductor is proposed to increase the locking range. The other divide-by-3 ILFD utilizes self-injection technique. The self-injection technique substantially enhances the locking range and phase noise, and reduces the minimum power of the injection signal needed for the 1/3 ILFD. The locking range is increased by 47.8 % and the phase noise is reduced by 14.77 dBc/Hz at 1-MHz offset.
19

Interference Modeling and Performance Analysis of 5G MmWave Networks

Niknam, Solmaz January 1900 (has links)
Doctor of Philosophy / Department of Electrical and Computer Engineering / Balasubramaniam Natarajan / Triggered by the popularity of smart devices, wireless traffic volume and device connectivity have been growing exponentially during recent years. The next generation of wireless networks, i.e., 5G, is a promising solution to satisfy the increasing data demand through combination of key enabling technologies such as deployment of a high density of access points (APs), referred to as ultra-densification, and utilization of a large amount of bandwidth in millimeter wave (mmWave) bands. However, due to unfavorable propagation characteristics, this portion of spectrum has been under-utilized. As a solution, large antenna arrays that coherently direct the beams will help overcome the hostile characteristics of mmWave signals. Building networks of directional antennas has given rise to many challenges in wireless communication design. One of the main challenges is how to incorporate 5G technology into current networks and design uniform structures that bring about higher network performance and quality of service. In addition, the other factor that can be severely impacted is interference behavior. This is basically due to the fact that, narrow beams are highly vulnerable to obstacles in the environment. Motivated by these factors, the present dissertation addresses some key challenges associated with the utilization of mmWave signals. As a first step towards this objective, we first propose a framework of how 5G mmWave access points can be integrated into the current wireless structures and offer higher data rates. The related resource sharing problem has been also proposed and solved, within such a framework. Secondly, to better understand and quantify the interference behavior, we propose interference models for mmWave networks with directional beams for both large scale and finite-sized network dimension. The interference model is based on our proposed blockage model which captures the average number of obstacles that cause a complete link blockage, given a specific signal beamwidth. The main insight from our analysis shows that considering the effect of blockages leads to a different interference profile. Furthermore, we investigate how to model interference considering not only physical layer specifications but also upper layers constraints. In fact, upper network layers, such as medium access control (MAC) protocol controls the number of terminals transmitting simultaneously and how resources are shared among them, which in turn impacts the interference power level. An interesting result from this analysis is that, from the receiving terminal standpoint, even in mmWave networks with directional signals and high attenuation effects, we still need to maintain some sort of sensing where all terminals are not allowed to transmit their packets, simultaneously. The level of such sensing depends on the terminal density. Lastly, we provide a framework to detect the network regime and its relation to various key deployment parameters, leveraging the proposed interference and blockage models. Such regime detection is important from a network management and design perspective. Based on our finding, mmWave networks can exhibit either an interference-limited regime or a noise-limited regime, depending on various factors such as access point density, blockage density, signal beamwidth, etc.
20

Novel Techniques for Rapid Cardiac Perfusion Magnetic Resonance Imaging with Whole Heart Coverage

Wang, Haonan 01 June 2016 (has links)
Magnetic Resonance Imaging (MRI) is a non-invasive medical imaging method that is used in the diagnosis of many common diseases. Compared to other medical imaging modalities, MRI has the ability to provide high-resolution 2D and 3D images in arbitrary orientations, without the use of potentially damaging ionizing radiation. Myocardial perfusion MRI is a promising non- invasive clinical way to detect cardiac disease. It can also provide quantitative analysis for blood flow within the heart. However, MRI requires longer scan times to acquire images at comparable resolutions to some other imaging modalities. Increasing image resolution, both spatially and temporally, is very important to myocardial perfusion MRI. The work presented in this dissertation focuses on the development of novel dynamic contrast-enhanced (DCE) MRI that is able to achieve both high spatial and temporal resolutions, as well as suitable spatial coverage of the heart. Three novel acquisition and reconstruction frame- works are proposed and analyzed in this dissertation. The first framework we propose uses a highly undersampled 3D Cartesian acquisition and total variation (TV) constrained reconstruction to accelerate the acquisition of myocardial perfu- sion images. This technique increases temporal resolution for contrast tracking without sacrificing spatial resolution. An analysis of the effect of different k-space trajectories using this technique is performed. The purpose of the second framework is to simplify cardiac perfusion studies. An ECG- gated saturation recovery sequence is regularly used for cardiac perfusion imaging. However, using an ungated acquisition has the potential benefit of reducing the acquisition time by eliminating the need for the ECG trigger signal. We present a novel non-Cartesian 2D multi-slice ungated acquisition, and demonstrate that it is a promising alternative to ECG-gated cardiac perfusion studies. An optimization analysis of our ungated acquisition is also presented. The third method in this dissertation combines the 2D ungated acquisition with multi-band excitation, which enables the excitation of multiple slices simultaneously. This method is able to reduce scan time not only through the ungated acquisition, but also from obtaining multiple slices at once. This allows us to achieve whole heart coverage without sacrificing temporal resolution. The contributions presented in this dissertation demonstrate the basic feasibility of car- diac perfusion MRI achieving whole-heart coverage in a clinical setting by overcoming the major existing limitations: speed of acquisition and spatial coverage.

Page generated in 0.051 seconds