• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 48
  • 22
  • 14
  • 7
  • 6
  • 6
  • 6
  • 3
  • 1
  • Tagged with
  • 142
  • 142
  • 60
  • 44
  • 40
  • 37
  • 25
  • 24
  • 22
  • 20
  • 19
  • 18
  • 17
  • 17
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Transient tyre modelling for the simulation of drivetrain dynamic response under low-to-zero speed traction manoeuvres

Bartram, Matthew January 2011 (has links)
The work presented in this thesis is dedicated to the study of transient tyre dynamics and how these influence the dynamic behaviour of the vehicle and its driveline, with the main focus being on low-to-zero speed manoeuvres such as pull-away events. The bulk of the work focuses on the amalgamation of the hitherto disparate fields of driveline modelling and detailed tyre modelling. Several tyre models are employed and their relative advantages and disadvantages analysed. The observed dynamic behaviour is correlated to the inherent structure of each tyre model in order for the most appropriate for driveline studies to be identified. The main simulation studies are split into two parts: the first comprises a study into isolated driveline dynamics; where the yaw, pitch and roll behaviours of the vehicle body are neglected. A relatively detailed driveline model with an open differential is used with tyre models of increasing complexity with the aim of determining when increased model detail fails to increase the accuracy of the results. The second part is concerned with the study of how the dynamics of the vehicle body and suspension affect tyre model performance and associated effects on the driveline behaviour. For this, the driveline and tyre models are incorporated into a full six degree-of-freedom vehicle model with full suspension effects. Frequency migration on low-μ surfaces is successfully explained via the decoupling of the vehicle and driveline inertias. Frequencies observed in FFT analyses of the simulation results correspond to those obtained through eigen-analysis of appropriately modified state-space models with varying degrees of coupling that reflect the vehicle travelling on uniform low- or split-μ surfaces. The main finding of the thesis is that this decoupling theory can also be applied to high-speed take-off manoeuvres, as it is the position along the tyre slip-force curve that dictates decoupling; i.e. if the curve has saturated. This leads to the effective traction stiffness being zero, which modifies the equations of motion and subsequently the system eigenvalues. A series of measurements are taken in order to verify the findings from the simulation work. Manoeuvres analogous to those simulated are carried out. It is found that only the simulation of split-μ conditions is necessary, as the results from the low-μ test show a similar pattern to those seen on the split-μ surface.
22

Mehrkörpermodellierung und Validierung einer 3 MW Windturbine / Multibody simulation and validation of a 3MW wind turbine

Schulze, Andreas, Woernle, C., Zierath, J. 09 June 2017 (has links) (PDF)
Gegenstand des Vortrages ist Entwicklung und Validierung eines elastischen Mehrkörpermodells der Prototypenanlage W2E-120/3.0fc der Frima W2E Wind to Energy GmbH. Folgende Schwerpunkte werden gesetzt: - Anforderungen an die Modellierung - Topologie des Mehrkörpermodells - Einbindung elastischer Körper - Einbindung aerodynamischer Lasten - Einbindung des Anlagenreglers - Experimentelle Validierung anhand von Produktionslastfällen Die vorgestellte Arbeit ist Teil des aktuellen Forschungsprojektes "DynAWind– Leichtbauoptimierte Konstruktionen von Windenergieanlagen" am Lehrstuhl für Technische Mechanik/Dynamik in Zusammenarbeit mit der W2E Wind to Energy GmbH.
23

Realistic Machine Simulation with Virtual Reality

Neugebauer, R., Klimant, P., Witt, M. 15 September 2014 (has links) (PDF)
Today highly complex components are manufactured on NC-controlled machine tools. The NC programs, controlling these machines, are usually automatically generated by CAM software. This automatic processing is often erroneous. The VR-based realistic machine simulation, presented in this paper, extends the usual content of a machine simulation, like material removal and collision detection, by various new aspects. The coupling of a real NC unit allows the recognition and elimination of all process- as well as controller-caused errors. The integration of the multi-body simulation enables the consideration of inertia, machine rigidity and milling cutter deflection.
24

Elastomultibody dynamics of RWD axle whine phenomena

Koronias, George January 2012 (has links)
Automotive industry is faced with numerous power train Noise, Vibration and Harshness issues. Particularly, in the driveline area of vehicles a noise commonly referred as differential axle whine which is a tonal response and becomes apparent under cruising conditions. This is one of the key concerns in rear wheel drive commercial vehicles. Although not a failure state, it is regarded as a quality issue and a source of annoyance, which can lead to warranty concerns. The associated cost of palliation to Ford Motor Company was estimated to be $25,000,000 in 2003. There have been several ways of studying axle whine through experimentation and numerical analysis. In this thesis, a new approach for investigating axle whine is highlighted, which is more integrative and detailed. Multi-body dynamics model of a light truck s driveline is developed with all the appropriate components, using constrained Lagrangian dynamics. Component flexibility is included for driveshaft pieces, rear axle half-shafts and the suspension elements. The connectivity of the components is accurately modelled such as the floating effect of rear half-shafts, linear bushings between driveline components to chassis connections, as well as the non-linear effect of tapered roller bearings, supporting the wheel hubs and gears. Furthermore, integrated to the previously described large scale model a detailed hypoid gear pair model is devised. This incorporates micro-scale physics for tooth contact analysis to predict geometric properties and deflections for the gear pair. At the same time thermo-elastohydrodynamic lubrication theory with non-Newtonian friction is applied. All these phenomena at different physical scales, such as large displacement rigid body dynamics and analytical equations for the detailed model are solved simultaneously, all within the same modelling environment. This multi-physics, multi-scale approach has not hitherto been reported in the literature, and constitutes a significant contribution to knowledge. Comparative studies of the model predictions and detailed vehicle tests are carried out, the combination of which points to resonant conditions in system responses and flexible component behaviour, coincident with the adverse conditions in the hypoid gear meshing. It is shown that vehicle drive and coast conditions, promoting teeth pair separations lead to irregular (improper) meshing of the differential gears. Such conditions induce impulsive actions that promote the axle whine phenomenon. This is a major finding of the research and contributes to a better understanding of the axle whine problem.
25

Analysis of vehicle rollover using a high fidelity multi-body model and statistical methods

Czechowicz, Maciej P. January 2015 (has links)
The work presented in this thesis is dedicated to the study of vehicle rollover and the tyre and suspension characteristics influencing it. Recent data shows that 35.4% of recorded fatal crashes in Sports Utility Vehicles (SUVs) included vehicle rollover. The effect of rollover on an SUV tends to be more severe than for other types of passenger vehicle. Additionally, the number of SUVs on the roads is rising. Therefore, a thorough understanding of factors affecting the rollover resistance of SUVs is needed. The majority of previous research work on rollover dynamics has been based on low fidelity models. However, vehicle rollover is a highly non-linear event due to the large angles in vehicle body motion, extreme suspension travel, tyre non-linearities and large forces acting on the wheel, resulting in suspension spring-aids, rebound stops and bushings operating in the non-linear region. This work investigates vehicle rollover using a complex and highly non-linear multi-body validated model with 165 degrees of freedom. The vehicle model is complemented by a Magic Formula tyre model. Design of experiment methodology is used to identify tyre properties affecting vehicle rollover. A novel, statistical approach is used to systematically identify the sensitivity of rollover propensity to suspension kinematic and compliance characteristics. In this process, several rollover metrics are examined together with stability considerations and an appropriate rollover metric is devised. Research so far reveals that the tyre properties having the greatest influence on vehicle rollover are friction coefficient, friction variation with load, camber stiffness, and tyre vertical stiffness. Key kinematic and compliance characteristics affecting rollover propensity are front and rear suspension rate, front roll stiffness, front camber gain, front and rear camber compliance and rear jacking force. The study of suspension and tyre parameters affecting rollover is supplemented by an investigation of a novel anti-rollover control scheme based on a reaction wheel actuator. The simulations performed so far show promising results. Even with a very simple and conservative control scheme the reaction wheel, with actuator torque limited to 100Nm, power limited to 5kW and total energy consumption of less than 3kJ, increases the critical manoeuvre velocity by over 9%. The main advantage of the proposed control scheme, as opposed to other known anti-rollover control schemes, is that it prevents rollover whilst allowing the driver to maintain the desired vehicle path.
26

Posture dependent dynamics in robotic machining

Assadi, Hamed 15 May 2019 (has links)
Compared to conventional machine tools, industrial robots offer great advantages such as multitasking, larger workspace, and lower price. However, these advantages of robots are undermined by their high structural flexibility leading to excessive deflections, severe vibrations, and ultimately violating dimensional tolerances and poor surface finish. Modeling the dynamics of robots under machining (e.g. milling and drilling) forces is essential for reducing deflections and vibrations during the process. Although modeling the dynamics of traditional machining systems is a well-studied subject, the existing modeling approaches are not applicable to robotic manipulators because of the posture-dependent dynamics of industrial robots. Within this context, the presented thesis aims to predict the stability of vibrations during robotic machining operations through prediction of posture dependent dynamic behavior of robots. A rigid-body modeling approach is used to identify the dynamic parameters of the robotic manipulator based on least squares estimation method. Next, by adopting a rigid link flexible joint model and employing experimental modal analysis to identify the joint stiffness and damping parameters, posture dependent dynamic response prediction of the robot is achieved. Finally, the posture-dependent milling stability is presented as a function of the predicted tool center point transfer function, spindle speed, and axial depth of cut. A Staubli TX200 robot and a Kuka KR90 robot are used as experimental case studies. / Graduate
27

Application of a Two-Level Targeter for Low-Thrust Spacecraft Trajectories

Collin E. York (5930948) 16 January 2019 (has links)
<div>Applications of electric propulsion to spaceflight in multi-body environments require a targeting algorithm to produce suitable trajectories on the ground and on board spacecraft. The two-level targeter with low thrust (TLT-LT) provides a framework to implement differential corrections in computationally-limited autonomous spacecraft applications as well as the larger design space of pre-mission planning. Extending existing two-level corrections algorithms, applications of the TLT-LT to spacecraft with a range of propulsive capabilities, from nearly-impulsive to low-thrust, are explored. The process of determining partial derivatives is generalized, allowing reduced logical complexity and increased flexibility in designing sequences of thrusting and ballistic segments. Various implementation strategies are explored to enforce constraints on time and other design variables as well as to improve convergence behavior through the use of dynamical systems theory and attenuation factors. The TLT-LT is applied to both nearly-impulsive and low-thrust spacecraft applications in the circular restricted three-body problem to demonstrate the flexibility of the framework to correct trajectories across the spectrum of thrust magnitude. Finally, parameter continuation is employed to extend a family of trajectories from a solution with nearly-impulsive thrust events to the low-thrust regime, and the characteristics of this transition are investigated.</div>
28

Thrust Vector Control of Multi-Body Systems Subject to Constraints

Nguyen, Tâm Willy 11 December 2018 (has links) (PDF)
This dissertation focuses on the constrained control of multi-body systems which are actuated by vectorized thrusters. A general control framework is proposed to stabilize the task configuration while ensuring constraints satisfaction at all times. For this purpose, the equations of motion of the system are derived using the Euler-Lagrange method. It is seen that under some reasonable conditions, the system dynamics are decoupled. This property is exploited in a cascade control scheme to stabilize the points of equilibrium of the system. The control scheme is composed of an inner loop, tasked to control the attitude of the vectorized thrusters, and an outer loop which is tasked to stabilize the task configuration of the system to a desired configuration. To prove stability, input-to-state stability and small gain arguments are used. All stability properties are derived in the absence of constraints, and are shown to be local. The main result of this analysis is that the proposed control scheme can be directly applied under the assumption that a suitable mapping between the generalized force and the real inputs of the system is designed. This thesis proposes to enforce constraints by augmenting the control scheme with two types of Reference Governor units: the Scalar Reference Governor, and the Explicit Reference Governor. This dissertation presents two case studies which inspired the main generalization of this thesis: (i) the control of an unmanned aerial and ground vehicle manipulating an object, and (ii) the control of a tethered quadrotor. Two further case studies are discussed afterwards to show that the generalized control framework can be directly applied when a suitable mapping is designed. / Doctorat en Sciences de l'ingénieur et technologie / info:eu-repo/semantics/nonPublished
29

Identification of physical parameters of biological and mechanical systems under whole-body vibration

Qiao, Guandong 15 December 2017 (has links)
The identification of the physical parameters (mass, stiffness, and damping) of structural, mechanical, and biomechanical systems is a major challenge in many applications, especially when dealing with old systems and biological systems with heavy damping and where environmental noises are presented. This work presents a novel methodology called eigenvector phase correction (EVPHC) to solve for the physical parameters of structural and biomechanical systems even with the existence of a significant amount of noise. The method was first tested on structural/mechanical systems and showed superior results when compared with an iterative method from the literature. EVPHC was then developed and used to identify the physical parameters of supine humans under vertical whole-body vibration. Modal parameters of fifteen human subjects, in the supine position, were first identified in this work using experimentation under vertical whole-body vibration. EVPHC was then used to solve an inverse modal problem for the identification of the stiffness and damping parameters at the cervical and lumbar areas of supine humans. The results showed that the resulting physical parameters were realistically close to those presented in the literature. The proposed human model was able to predict the time histories of the acceleration at the head, chest, pelvis, and legs very closely to those of the experimental measured values. A scaling methodology is also presented in this work, where an average human model was scaled to an individual subject using the body mass properties.
30

Passive and muscle-based predictive computer models of seated and supine humans in whole-body vibration

Wang, Yang 01 December 2012 (has links)
Studies of human response to whole-body vibration, such those encountered in heavy machinery and ground and aerial transportation, have highlighted the critical role of the head-neck posture of seated human occupants and the role of the transport system of a supine human on the severity of the transmitted vibration to the human body. Novel passive and muscle-based models are introduced in this work to predict the biodynamical response of the human under whole-body vibration in seated and supine postures. Planar and three-dimensional models representing the human head-neck system under different seated postures and fore-aft and multiple-axis whole-body vibration are first introduced. In these models, the head-neck system is represented by rigid links connected via spring-damper components representing the soft-tissue and connecting elements between the bones. Additional muscle components are added to some models. The muscle components comprise additional mass, spring, and damper elements arranged in a special order to capture the effect of changes in the displacement, velocity, acceleration, and jerk. The results show that the proposed models are able to predict the displacement and acceleration of the head under different vibration files, with the muscle-based models showing better performance than the passive models. The second set of models is introduced in this work to investigate the effect of the underlying transport system conditions on the response of supine humans under vertical and multiple-axis whole-body vibration. In these models, the supine human body is represented by three rigid links representing the head, torso/arms, and legs. The links are connected via rotational and translational joints, and therefore, it is expected that the models can capture the coupling effects between adjacent segments. The joints comprise translational and rotational spring-damper components that represent the soft tissue and the connecting elements between the segments. The contact surfaces between the supine human and the underlying transport system were modeled using spring-damper elements. Two underlying transport systems were considered, including a rigid support and a long spinal board attached to a military litter. The results showed that the proposed models were able to predict the effect of the transport systems on the human response under different vibration conditions.

Page generated in 0.0468 seconds