• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 31
  • 23
  • 6
  • 2
  • 2
  • 1
  • Tagged with
  • 78
  • 78
  • 59
  • 45
  • 20
  • 20
  • 16
  • 14
  • 13
  • 11
  • 11
  • 11
  • 11
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Feature Reduction and Multi-label Classification Approaches for Document Data

Jiang, Jung-Yi 08 August 2011 (has links)
This thesis proposes some novel approaches for feature reduction and multi-label classification for text datasets. In text processing, the bag-of-words model is commonly used, with each document modeled as a vector in a high dimensional space. This model is often called the vector-space model. Usually, the dimensionality of the document vector is huge. Such high-dimensionality can be a severe obstacle for text processing algorithms. To improve the performance of text processing algorithms, we propose a feature clustering approach to reduce the dimensionality of document vectors. We also propose an efficient algorithm for text classification. Feature clustering is a powerful method to reduce the dimensionality of feature vectors for text classification. We propose a fuzzy similarity-based self-constructing algorithm for feature clustering. The words in the feature vector of a document set are grouped into clusters based on similarity test. Words that are similar to each other are grouped into the same cluster. Each cluster is characterized by a membership function with statistical mean and deviation. When all the words have been fed in, a desired number of clusters are formed automatically. We then have one extracted feature for each cluster. The extracted feature corresponding to a cluster is a weighted combination of the words contained in the cluster. By this algorithm, the derived membership functions match closely with and describe properly the real distribution of the training data. Besides, the user need not specify the number of extracted features in advance, and trial-and-error for determining the appropriate number of extracted features can then be avoided. Experimental results show that our method can run faster and obtain better extracted features than other methods. We also propose a fuzzy similarity clustering scheme for multi-label text categorization in which a document can belong to one or more than one category. Firstly, feature transformation is performed. An input document is transformed to a fuzzy-similarity vector. Next, the relevance degrees of the input document to a collection of clusters are calculated, which are then combined to obtain the relevance degree of the input document to each participating category. Finally, the input document is classified to a certain category if the associated relevance degree exceeds a threshold. In text categorization, the number of the involved terms is usually huge. An automatic classification system may suffer from large memory requirements and poor efficiency. Our scheme can do without these difficulties. Besides, we allow the region a category covers to be a combination of several sub-regions that are not necessarily connected. The effectiveness of our proposed scheme is demonstrated by the results of several experiments.
22

Multi-Label Dimensionality Reduction

January 2011 (has links)
abstract: Multi-label learning, which deals with data associated with multiple labels simultaneously, is ubiquitous in real-world applications. To overcome the curse of dimensionality in multi-label learning, in this thesis I study multi-label dimensionality reduction, which extracts a small number of features by removing the irrelevant, redundant, and noisy information while considering the correlation among different labels in multi-label learning. Specifically, I propose Hypergraph Spectral Learning (HSL) to perform dimensionality reduction for multi-label data by exploiting correlations among different labels using a hypergraph. The regularization effect on the classical dimensionality reduction algorithm known as Canonical Correlation Analysis (CCA) is elucidated in this thesis. The relationship between CCA and Orthonormalized Partial Least Squares (OPLS) is also investigated. To perform dimensionality reduction efficiently for large-scale problems, two efficient implementations are proposed for a class of dimensionality reduction algorithms, including canonical correlation analysis, orthonormalized partial least squares, linear discriminant analysis, and hypergraph spectral learning. The first approach is a direct least squares approach which allows the use of different regularization penalties, but is applicable under a certain assumption; the second one is a two-stage approach which can be applied in the regularization setting without any assumption. Furthermore, an online implementation for the same class of dimensionality reduction algorithms is proposed when the data comes sequentially. A Matlab toolbox for multi-label dimensionality reduction has been developed and released. The proposed algorithms have been applied successfully in the Drosophila gene expression pattern image annotation. The experimental results on some benchmark data sets in multi-label learning also demonstrate the effectiveness and efficiency of the proposed algorithms. / Dissertation/Thesis / Ph.D. Computer Science 2011
23

Ordering Classifier Chains using filter model feature selection techniques

Gustafsson, Robin January 2017 (has links)
Context: Multi-label classification concerns classification with multi-dimensional output. The Classifier Chain breaks the multi-label problem into multiple binary classification problems, chaining the classifiers to exploit dependencies between labels. Consequently, its performance is influenced by the chain's order. Approaches to finding advantageous chain orders have been proposed, though they are typically costly. Objectives: This study explored the use of filter model feature selection techniques to order Classifier Chains. It examined how feature selection techniques can be adapted to evaluate label dependence, how such information can be used to select a chain order and how this affects the classifier's performance and execution time. Methods: An experiment was performed to evaluate the proposed approach. The two proposed algorithms, Forward-Oriented Chain Selection (FOCS) and Backward-Oriented Chain Selection (BOCS), were tested with three different feature evaluators. 10-fold cross-validation was performed on ten benchmark datasets. Performance was measured in accuracy, 0/1 subset accuracy and Hamming loss. Execution time was measured during chain selection, classifier training and testing. Results: Both proposed algorithms led to improved accuracy and 0/1 subset accuracy (Friedman & Hochberg, p < 0.05). FOCS also improved the Hamming loss while BOCS did not. Measured effect sizes ranged from 0.20 to 1.85 percentage points. Execution time was increased by less than 3 % in most cases. Conclusions: The results showed that the proposed approach can improve the Classifier Chain's performance at a low cost. The improvements appear similar to comparable techniques in magnitude but at a lower cost. It shows that feature selection techniques can be applied to chain ordering, demonstrates the viability of the approach and establishes FOCS and BOCS as alternatives worthy of further consideration.
24

Multi-Label Classification Methods for Image Annotation

BRHANIE, BEKALU MULLU January 2016 (has links)
No description available.
25

Sistemas classificadores evolutivos para problemas multirrótulo / Learning classifier system for multi-label classification

Rosane Maria Maffei Vallim 27 July 2009 (has links)
Classificação é, provavelmente, a tarefa mais estudada na área de Aprendizado de Máquina, possuindo aplicação em uma grande quantidade de problemas reais, como categorização de textos, diagnóstico médico, problemas de bioinformática, além de aplicações comerciais e industriais. De um modo geral, os problemas de classificação podem ser categorizados quanto ao número de rótulos de classe que podem ser associados à cada exemplo de entrada. A abordagem mais investigada pela comunidade de Aprendizado de Máquina é a de classes mutuamente exclusivas. Entretanto, existe uma grande variedade de problemas importantes em que cada exemplo de entrada pode ser associado a mais de um rótulo ou classe. Esses problemas são denominados problemas de classificação multirrótulo. Os Learning Classifier Systems(LCS) constituem uma técnica de Indução de Regras de Classificação que tem como principal mecanismo de busca um Algoritmo Genético. Essa técnica busca encontrar um conjunto de regras que tenha alta precisão de classificação, que seja compreensível e que possua regras consideradas interessantes sob o ponto de vista de classificação. Apesar de existirem na literatura diversos trabalhos sobre os LCS para problemas de classificação com classes mutuamente exclusivas, pouco se tem conhecimento sobre um LCS que seja capaz de lidar com problemas multirrótulo. Dessa maneira, o objetivo desta monografia é apresentar uma proposta de LCS para problemas multirrótulo, que pretende induzir um conjunto de regras de classificação que produza um resultado eficaz e comparável com outras técnicas de classificação. De acordo com esse objetivo, apresenta-se também uma revisão bibliográfica dos temas envolvidos na proposta, que são: Sistemas Classificadores Evolutivos e Classificação Multirrótulo / Classification is probably the most studied task in the Machine Learning area, with applications in a broad number of real problems like text categorization, medical diagnosis, bioinformatics and even comercial and industrial applications. Generally, classification problems can be categorized considering the number of class labels associated to each input instance. The most studied approach by the community of Machine Learning is the one that considers mutually exclusive classes. However, there is a large variety of important problems in which each instance can be associated to more than one class label. This problems are called multi-label classification problems. Learning Classifier Systems (LCS) are a technique for rule induction which uses a Genetic Algorithm as the primary search mechanism. This technique searchs for sets of rules that have high classification accuracy and that are also understandable and interesting on the classification point of view. Although there are several works on LCS for classification problems with mutually exclusive classes, there is no record of an LCS that can deal with the multi-label classification problem. The objective of this work is to propose an LCS for multi-label classification that builds a set of classification rules which achieves results that are efficient and comparable to other multi-label methods. In accordance with this objective this work also presents a review of the themes involved: Learning Classifier Systems and Multi-label Classification
26

A Multi-label Text Classification Framework: Using Supervised and Unsupervised Feature Selection Strategy

Ma, Long 08 August 2017 (has links)
Text classification, the task of metadata to documents, requires significant time and effort when performed by humans. Moreover, with online-generated content explosively growing, it becomes a challenge for manually annotating with large scale and unstructured data. Currently, lots of state-or-art text mining methods have been applied to classification process, many of them based on the key word extraction. However, when using these key words as features in classification task, it is common that feature dimension is huge. In addition, how to select key words from tons of documents as features in classification task is also a challenge. Especially when using tradition machine learning algorithm in the large data set, the computation cost would be high. In addition, almost 80% of real data is unstructured and non-labeled. The advanced supervised feature selection methods cannot be used directly in selecting entities from massive of data. Usually, extracting features from unlabeled data for classification tasks, statistical strategies have been utilized to discover key features. However, we propose a nova method to extract important features effectively before feeding them into the classification assignment. There is another challenge in the text classification is the multi-label problem, the assignment of multiple non-exclusive labels to the documents. This problem makes text classification more complicated when compared with single label classification. Considering above issues, we develop a framework for extracting and eliminating data dimensionality, solving the multi-label problem on labeled and unlabeled data set. To reduce data dimension, we provide 1) a hybrid feature selection method that extracts meaningful features according to the importance of each feature. 2) we apply the Word2Vec to represent each document with a lower feature dimension when doing the document categorization for the big data set. 3) An unsupervised approach to extract features from real online generated data for text classification and prediction. On the other hand, to solve the multi-label classification task, we design a new Multi-Instance Multi-Label (MIML) algorithm in the proposed framework.
27

A piRNA regulation landscape in C. elegans and a computational model to predict gene functions

Chen, Hao 28 October 2020 (has links)
Investigating mechanisms that regulate genes and the genes' functions are essential to understand a biological system. This dissertation is consists of two specific research projects under these aims, which are for understanding piRNA's regulation mechanism and predicting genes' function computationally. The first project shows a piRNA regulation landscape in C. elegans. piRNAs (Piwi-interacting small RNAs) form a complex with Piwi Argonautes to maintain fertility and silence transposons in animal germlines. In C. elegans, previous studies have suggested that piRNAs tolerate mismatched pairing and in principle could target all transcripts. In this project, by computationally analyzing the chimeric reads directly captured by cross-linking piRNA and their targets in vivo, piRNAs are found to target all germline mRNAs with microRNA-like pairing rules. The number of targeting chimeric reads correlates better with binding energy than with piRNA abundance, suggesting that piRNA concentration does not limit targeting. Further more, in mRNAs silenced by piRNAs, secondary small RNAs are found to be accumulating at the center and ends of piRNA binding sites. Whereas in germline-expressed mRNAs, reduced piRNA binding density and suppression of piRNA-associated secondary small RNAs targeting correlate with the CSR-1 Argonaute presence. These findings reveal physiologically important and nuanced regulation of piRNA targets and provide evidence for a comprehensive post-transcriptional regulatory step in germline gene expression. The second project elaborates a computational model to predict gene function. Predicting genes involved in a biological function facilitates many kinds of research, such as prioritizing candidates in a screening project. Following the “Guilt By Association” principle, multiple datasets are considered as biological networks and integrated together under a multi-label learning framework for predicting gene functions. Specifically, the functional labels are propagated and smoothed using a label propagation method on the networks and then integrated using an “Error correction of code” multi-label learning framework, where a “codeword” defines all the labels annotated to a specific gene. The model is then trained by finding the optimal projections between the code matrix and the biological datasets using canonical correlation analysis. Its performance is benchmarked by comparing to a state-of-art algorithm and a large scale screen results for piRNA pathway genes in D.melanogaster. Finally, piRNA targeting's roles in epigenetics and physiology and its cross-talk with CSR-1 pathway are discussed, together with a survey of additional biological datasets and a discussion of benchmarking methods for the gene function prediction.
28

EMERGENCY MEDICAL SERVICE EMR-DRIVEN CONCEPT EXTRACTION FROM NARRATIVE TEXT

Susanna S George (10947207) 05 August 2021 (has links)
Being in the midst of a pandemic with patients having minor symptoms that quickly become fatal to patients with situations like a stemi heart attack, a fatal accident injury, and so on, the importance of medical research to improve speed and efficiency in patient care, has increased. As researchers in the computer domain work hard to use automation in technology in assisting the first responders in the work they do, decreasing the cognitive load on the field crew, time taken for documentation of each patient case and improving accuracy in details of a report has been a priority. <br>This paper presents an information extraction algorithm that custom engineers certain existing extraction techniques that work on the principles of natural language processing like metamap along with syntactic dependency parser like spacy for analyzing the sentence structure and regular expressions to recurring patterns, to retrieve patient-specific information from medical narratives. These concept value pairs automatically populates the fields of an EMR form which could be reviewed and modified manually if needed. This report can then be reused for various medical and billing purposes related to the patient.
29

Multi-label classification on locally-linear data: Application to chemical toxicity prediction

Yap, Xiu Huan 16 August 2021 (has links)
No description available.
30

Automatická klasifikace smluv pro portál HlidacSmluv.cz / Automated contract classification for portal HlidacSmluv.cz

Maroušek, Jakub January 2020 (has links)
The Contracts Register is a public database containing contracts concluded by public institutions. Due to the number of documents in the database, data analysis is proble- matic. The objective of this thesis is to find a machine learning approach for sorting the contracts into categories by their area of interest (real estate services, construction, etc.) and implement the approach for usage on the web portal Hlídač státu. A large number of categories and a lack of a tagged dataset of contracts complicate the solution. 1

Page generated in 0.3126 seconds