• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 30
  • 3
  • 3
  • 3
  • 2
  • 1
  • Tagged with
  • 49
  • 49
  • 14
  • 13
  • 11
  • 10
  • 10
  • 10
  • 9
  • 9
  • 9
  • 8
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Multi material topology optimization with hybrid cellular automata

Solis Ocampo, Jennifer January 2017 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Topology Optimization is a technique that allows for the obtaining structures which maximize the use of the material. This is done by intelligently deciding the binary distribution of solid material and void, in a discretized given space. Several researchers have provided methods to tackle binary topology optimization. New ef- forts are focused on extending the application for multi-phase optimizations. At the industrial level, several components designed are made up of more than one material to reduce weight and production costs. The objective of this work is to implement the algorithm of Hybrid Cellular Automaton for multi-material topology optimiza- tion. The commonly used interpolation rule SIMP, which allows to relate the design variables to the mechanical properties of the material, is replaced by ordered SIMP interpolation function. The multiple volume constraints are applied sequentially, starting with the most elastic material. When a constraint is satisfied, the elements assigned to this material remain passive by a defined number of iterations to promote the convergence of the solution. Examples are shown for static and dynamic loads. The work demonstrates the versatility of algorithms based on control systems to solve problems of multiple phases and transient response fields.
2

Multi-Material Fiber Fabrication and Applications in Distributed Sensing

Yu, Li 25 January 2019 (has links)
Distributed sensing has been an attractive alternative to the traditional single-point sensing technology when measurement at multiple locations is required. Traditional distributed sensing methods based on silica optical fiber and electric coaxial cables have some limitations for specific applications, such as in smart textiles and wearable sensors. By adopting the fiber thermal drawing technique, we have designed and fabricated multi-material electrode-embedded polymer fibers with distributed sensing capabilities. Polymers sensitive to temperature and pressure have been incorporated into the fiber structure, and thin metal electrodes placed inside fiber by convergence drawing have enabled detection of local impedance change with electrical reflectometry. We have demonstrated that these fibers can detect temperature and pressure change with high spatial resolution. We have also explored the possibility of using polymer optical fiber in a Raman scattering based distributed temperature sensing system. Stokes and Anti-Stokes signals of a PMMA fiber illuminated by a 532 nm pulsed laser was recorded, and the ratio was used to indicate local temperature change. We have also developed a unique way to fabricate porous polymer by thermal drawing polymer materials with controlled water content in the polymer. The porous fibers were loaded with a fluorescent dye, and its release in tissue phantoms and murine tumors was observed. The work has broadened the scope of multi-material, multi-functional fiber and may shed light on the development of novel smart textile devices. / PHD / In recent years smart textiles and wearable gadgets have already changed the way we live. There has been increasing industrial interest to develop novel flexible, stretchable devices that can interact with human and the environment. Thermal drawing technique originally invented for manufacturing telecommunication optical fiber has been used by researchers to fabricate fibers with more functionality. In this work, we report the progress made on the fabrication of multi-material fiber. Soft polymer fibers capable of measuring temperature and pressure were designed and made by the thermal drawing technique. Submillimeter fibers with thin copper electrodes have shown potential to be readily embedded in a smart fabric to provide 1D information in one direction or woven into a 2D pattern for area monitoring. We have also explored another temperature measurement scheme using polymer optical fibers with a pulsed laser. Compared with the electronic fibers, it is less susceptible to electrical noise and more robust. Lastly, we have shown a unique way to generate porosity in thermally drawn polymer fibers. The elongated pores in the fibers come from water escaping the fiber during the fabrication process. The three aspects of the project expand the scope of multi-material, multi-functional fiber and can shed light on the future development of electronic textile devices.
3

Ridged Nail Designs for Multi-Material Joining of Automotive Structures

Sankaran, Nishanth Bharadwaj 11 December 2018 (has links)
No description available.
4

Directed energy deposition of tool steel/copper alloy multi-material structures

Zhao, Zhao 25 July 2023 (has links)
Multi-material structures (MMSs) are attractive due to their unique advantages in achieving tailored properties at different locations in a single part. Producing such structures by additive manufacturing has been gaining more and more attention because of the beneficial characteristics of additive manufacturing processes such as its ability in building complex geometries, shortening producing chains, and most importantly, easily integrating with multi-material feeding systems. This PhD thesis investigates the potential of MMSs fabricated by directed energy deposition (DED) using tool steel and copper alloy. Specifically, AISI H13 hot work tool steel is deposited on copper-beryllium alloy (CuBe) substrate using three deposition strategies: directly depositing H13 on CuBe (H13/CuBe), SS316L buffer (H13/SS316L/CuBe), and commercially pure nickel buffer (H13/Ni/CuBe), aiming to minimize cracking issues. The morphology of single-track, single-layer, and multi-layer specimens is analyzed. The microstructure of deposited specimens is also investigated, along with its mechanical and thermal properties, such as microhardness, wear resistance, load-bearing capability (LBC), and thermal conductivity. The results show that directly depositing H13 on CuBe cannot avoid cracking in the H13 layers while preheating the CuBe substrate at 150°C and 250°C reduces the cracking tendency but damages the strength of the CuBe substrate due to over-aging while introducing difficulty to manage processing procedure. Using SS316L buffer can suppress the crack extension in H13 cladding due to a barrier mechanism, i.e., its ability to reduce the Cu penetration into H13 layers. However, SS316L itself is prone to cracking when directly deposited on the CuBe substrate as a buffer layer. Through analysis of cracking morphology, parameter effects, and element distribution, it was possible to identify solidification cracking as the primary cracking mechanism in all specimens. Two metallurgical factors, solidification temperature range and amount of terminal liquid, were found to dominate the cracking tendency. The introduction of Cu into steel can significantly extend the solidification temperature range, thereby increasing the susceptibility to cracking. However, as the Cu composition continuously increases, the cracking susceptibility decreases due to the backfilling of the terminal liquid into cracks resulting in a healing effect. The solidification paths of the Fe-Cu binary system were calculated as a function of Cu composition. Using this data, a map was generated reporting the solidification temperature range and terminal liquid amount as a function of Cu composition for the Fe-Cu binary system. Even if only to a first approximation (the effect of alloying elements in both, steel and CuBe alloy), this map can be used as a tool to estimate the cracking susceptibility of steel/copper alloy MMSs deposited by DED. The experimental results are in good agreement with thermodynamic calculations. Based on this analysis, a pure nickel buffer strategy was selected and proved to be effective in minimizing the cracking issue in H13 due to the narrow solidification temperature range of Ni-Cu and Ni-Fe binary systems induced the high solubility of Ni in Fe and Cu. By employing this strategy, crack-free specimens were produced. The high hardness of the H13 single-layer cladding, with an average value of 740 HV, provided a significant improvement in wear resistance compared to the CuBe (400 HV). However, in multi-layer specimens, a gradual decrease in microhardness of H13 cladding from the outer to the inner layers was observed due to the mixing of remelted soft buffer materials into H13 and the in-situ tempering effect in the previous deposited H13 layers. The above result, further confirms that the load-bearing capability (LBC) cannot be infinitely improved by adding more H13 layers. In general, in the low loading range (From 5 to 10 kN), the LBC of MMS specimens was higher than the CuBe due to the higher hardness of outer H13 layers. However, it became lower in the high loading range due to the presence of soft sublayer materials such as softened martensite, soft buffer layers (H316L = 260 HV or HNi = 130 HV), and the heat-affected zones in the CuBe substrate. The thermal conductivity of MMS specimens first drops rapidly to half of the original value as the cladding thickness ratio (tcladding/tCuBe) increases from 0 to around 20%. After that, the decrease becomes slower, with a further reduction of around 37% in thermal conductivity as the cladding thickness ratio increases from 20% up to 50%. Therefore, a tradeoff between mechanical and thermal properties must be considered looking for the application of these cladding systems. A proper cladding thickness ratio of around 20% is recommended to achieve reasonably high strength while still maintaining thermal conductivity at an acceptable level. Overall, these findings have important implications for the selection of appropriate materials and processing parameters to optimize the mechanical and thermal properties of tool steel/copper alloy MMSs deposited by DED.
5

Multimaterial Fiber Sensors for Physical Measurements

Wang, Ruixuan 03 September 2024 (has links)
Polymer fiber sensors have been extensively explored over the past few decades for biomedical, structural health monitoring, and environmental monitoring applications. Their low melting point and well-established processing methods make them easily integrable with other materials, such as metals, semiconductor devices, and composites, to create multimaterial sensors with versatile sensing capabilities. However, the high viscoelasticity of polymer materials and the limitations of existing sensing mechanisms constrain the precision and stability of these sensors. This research focuses on enhancing the sensitivity of multimaterial polymer sensors by improving both the sensing mechanisms (chapter 2 and 3) and sensor structures (chapter 4 and 5). Chapters 2 and 3 discuss the integration of silica optical fiber sensors into magnetostrictive composite materials for distributed magnetic field sensing. A series of Fiber Bragg Gratings (FBGs) were inscribed in the core of a silica fiber, which was then thermally embedded at the center of a magnetostrictive composite made of Terfenol-D and thermoplastic elastomers. The magnetostrictive properties of the composite, using various polymer matrices, were thoroughly investigated. A detailed study of the sensor's response under different boundary conditions and applied tensions demonstrated its tunable frequency response and bandwidth capabilities. Furthermore, the sensor's magnetic field sensing performance was characterized under applied AC magnetic fields, showing a responsivity of up to 4.5 ppm/mT and a resolution of 0.1 mT. Theoretical modeling of the magnetostrictive fiber's behavior was also conducted, with the strain transfer coefficient being calculated and compared to the bulk material's response. This thermally drawn magnetostrictive fiber exhibits significant potential for fully distributed sensing applications. In Chapters 4 and 5, the development of a stretchable fiber strain sensor is presented, with improvements in sensitivity achieved through structural optimizations. Polymer fibers, known for their high stretchability, flexibility, and softness, are promising candidates for sensing applications. However, their high viscoelasticity often leads to significant hysteresis. To address this, a double-coil strain sensor was introduced in this research. A theoretical model of the double-coil capacitance was developed to inform future sensor designs. Based on this model, a stretchable miniature fiber sensor was constructed, featuring a stretchable core tightly coiled with parallel conductive wires. This sensor demonstrated low hysteresis, a theoretical resolution of 0.015%, a response time of less than 30 milliseconds, and outstanding stability after more than 16,000 cycles of testing. Its potential as a wearable device was showcased by embedding it into belts, gloves, and knee protectors, with applications ranging from bladder monitoring to life safety rope systems. The dissertation concludes with a discussion of the research findings and suggestions for future directions in the development of multimaterial fiber sensors. / Doctor of Philosophy / This research focuses on enhancing the sensitivity of polymer fiber sensors, which are widely used in healthcare monitoring, infrastructure safety, and environmental observation. These sensors offer the advantage of integrating with other materials to create versatile, multi-functional devices. However, their soft nature and limited sensing mechanisms pose challenges to measurement accuracy and stability. This dissertation proposes improvements in the sensitivity of multimaterial polymer fiber sensors by enhancing both their sensing mechanisms and structural designs. In the first part, new techniques were developed to improve magnetic field sensing by embedding optical fibers into magnetically responsive materials. A scalable method called thermal drawing was used to fabricate magnetostrictive fibers, enabling the sensors to measure magnetic fields at various locations with a minimum detectable change of 0.1 mT. This approach enhances the accuracy of magnetic field detection, which is valuable for monitoring magnetic field distributions in industrial applications. The second part introduces a stretchable sensor designed for strain detection in wearable, biomedical, and structural health monitoring applications. Featuring a double-coil design, this sensor demonstrated stability, durability, and accuracy in real-time monitoring by detecting changes in relative capacitance. Overall, this research offers significant insights into improving the reliability and effectiveness of polymer fiber sensors, paving the way for future innovations in smart sensing technologies. The dissertation concludes with a discussion of potential improvements and future research directions.
6

A Multi-Material Projection Stereolithography System for Manufacturing Programmable Negative Poissons Ratio Structures

Chen, Da 07 February 2017 (has links)
Digital light Projection based Additive Manufacturing (AM) enables fabrication of complex three-dimensional (3D) geometries for applications ranging from rapid prototyping jet parts to scaffolds for cell cultures. Despite the ability in producing complex, three-dimensional architectures, the state of art DLP AM systems is limited to a single homogenous photo-polymer and it requires a large volume of resin bath to begin with. Extensible Multi-material Stereolithography (EMSL) is a novel high-resolution projection stereolithography system capable of manufacturing hybrid 3D objects. This system provides new capabilities, allowing more flexible design criteria through the incorporation of multiple feedstock materials throughout the structure. With EMSL manufacturing ability, multi-material programmable negative Poissons ratio honeycomb reentrant structures are realized. Researchers have been studying auxetic structures over decades, the mechanical property control of auxetic structure mainly relies on geometry design in previous studies. Now with the help of EMSL system, other design variables associated with auxetic structures, such as material properties of local structural members, are added into design process. The additional variables are then proved to have significant effects on the material properties of the auxetic structures. The ability to accurately manufacture multi-material digital design will not only allow for novel mechanical and material researches in laboratory, but also extend the additive manufacturing technology to numerous future applications with characteristics such as multiple electrical, electromechanical and biological properties. The design and optimization of EMSL system realizes novel structures have not been producible, therefore it will stimulate new possibilities for future additive manufacturing development. / Master of Science / Since 1970s, stereolithography, one of the most commonly known additive manufacturing techniques nowadays, has been improving the ability we make things. Through the controllable and repeatable photo-polymerization process, stereolithography can manufacture three-dimensional (3D) physical objects with fast speed, high accuracy and highly detailed surface finish. Today, stereolithography is already widely used in various rapid prototyping and manufacturing areas including dental products, jewelry prototypes, structural and tooling components. While latest researches continuously push its resolution to smaller scale or wider areas, this process is still limited to single material manufacturing. To go beyond this manufacturing limitation, this thesis reports an Extensible Multimaterial Stereolithography (EMSL) system. This system takes advantages of the sequential projections from a digital light modulator, combined with several lowcost while efficient mechatronics components to enable printing at least two types of materials with distinct colors or mechanical properties. With the multi-material printing capability from EMSL, novel multi-material 3D auxetic structures, which have only been theoretical concepts, are successfully manufactured and tested. The reliability of EMSL process and properties of the new materials are investigated with experiments and numerical calculations. The system can be further extended to print multiple feedstock materials into one complex architectural assembly. By realizing multi-material manufacturing capability, EMSL has broaden the potential applications of additive manufacturing and it will enable the development of multiple research and application areas including metamaterial, micro-electromechanical systems and bio-medical implants.
7

A multiaxial warp knitting based yarn path manipulation technology for the production of bionic-inspired multifunctional textile reinforcements in lightweight composites

Sankaran, Vignaesh, Ruder, Tristan, Rittner, Steffen, Hufnagl, Evelin, Cherif, Chokri 09 October 2019 (has links)
Composites have now revolutionized most industries, like aerospace, marine, electrical, transportation, and have proved to be a worthy alternative to other traditional materials. However for a further comprehensive usage, the tailorability of hybrid composites according to the specific application needs on a large-scale production basis is required. In this regard, one of the major fundamental research fields here involves a technology development based on the multiaxial warp-knitting technique for the production of bionic-inspired and application-specific textile preforms that are force compliant and exhibit multi-material design. This article presents a newly developed yarn (warp) path manipulation unit for multiaxial warp-knitting machines that enables a targeted production of customized textile preforms with the above characteristics. The technological development cycle and their experimental validation to demonstrate the feasibility of new technology through production of some patterns for different field of applications are then discussed.
8

Multimaterial Fibers And Tapers A Platform For Nonlinear Photonics And Nanotechnology

Shabahang, Soroush 01 January 2014 (has links)
The development of optical sources and components suitable for the mid-infrared is crucial for applications in this spectral range to reach the maturity level of their counterparts in the visible and near-infrared spectral regimes. The recent commercialization of quantum cascade lasers is leading to further interest in this spectral range. Wideband mid-infrared coherent sources, such as supercontinuum generation, have yet to be fully developed. A mid-infrared supercontinuum source would allow for unique applications in spectroscopy and sensing. Over the last decade, it has been shown that high-index confinement in highly nonlinear fibers pumped with high-peak-power pulses is an excellent approach to supercontinuum generation in the visible and near-infrared. Nonlinear waveguides such as fibers offer an obvious advantage in increasing the nonlinear interaction length maintained with a small cross section. In addition, fiber systems do not require optical alignment and are mechanically stable and robust with respect to the environmental changes. These properties have made fiber systems unique in applications where they are implemented in a harsh and unstable environment. In extending this approach into the mid-infrared, I have used chalcogenide glass fibers. Chalcogenide glasses have several attractive features for this application: they have high refractive indices for high optical-confinement, have a wide transparency window in the mid-infrared, and have a few orders-of-magnitude higher nonlinearity than silica glass and other mid-IR glasses. Producing chalcogenide glass fiber tapers offer, furthermore, the possibility of dispersion control and stronger field confinement and hence higher nonlinearity, desired for supercontinuum generation.
9

Modélisation expérimentale par les réseaux de neurones du perçage multi-materiaux

Roudgé, Mathieu 08 February 2011 (has links)
Les nouvelles avancées dans le domaine de la science des matériaux ont engendré l’apparition de nouvelles problématiques notamment concernant leurs perçages. Dans le cas des structures aéronautiques, l’opération de perçage des panneaux multi-matériaux CFRP/aluminium se situe juste avant l’assemblage final. Les pièces percées ont donc une forte valeur ajoutée. L’intérêt de pouvoir prédire le moment où la qualité du perçage s’approche des bornes des spécifications prend alors tout son sens. La mise en place d’un modèle expérimental multi-matériaux par les réseaux de neurones permet prédire la qualité du perçage réalisé pour une séquence d’empilement donnée. En utilisant une démarche similaire, un système de surveillance hors ligne du perçage multi-matériaux a été établi. Deux méthodes ont été développées : la méthode générale permettant de s’adapter à un grand nombre d’empilement et la méthode spécifique, plus précise, mais dont le domaine de validité se cantonne à une seul séquence. / New advances in the field of materials science have led to the emergence of new issues particularly concerning their holes. In the case of aeronautical structures, the drilling of multi-material panels CFRP / aluminum is just before final assembly. Pierced parts thus have a high added value. The interest can predict when the quality of the hole approaches the limits of the specifications takes a lot of sense. The establishment of an experimental model multi-materials by neural networks can predict the quality of the hole made for a given stacking sequence.Using a similar approach, a monitoring system offline drilling multi-materials has been established. Two methods have been developed: the general method to adapt to a large number of stacking and specific method, more accurate, but the range of validity is confined to a single sequence.
10

Design Upgrades, Reliability Testing and Implementation of Engineering Grade Thermoplastics in Prusa MMU2s

Kannoth, Ajith January 2020 (has links)
This paper studies the two aspects of current problems that plagues the Prusa i3 MK3sprinters in possession of JTH and how to resolve them; to be able to get a reliable printoutputs from engineering grade materials apart from conventional materials like PLAand PETG. The second aspect being the implementation of multi material module 2.0S,hereafter referred to as MMU2s successfully by analyzing and testing the current modi-cations and upgrades currently in the community and suggest any further modications,if required, both in terms of hardware and software which is further discussed in theupcoming sections. At present, there are numerous design upgrades and modicationsover the stock parts in the community which claim to iron out the reliability issues ofthe multi material unit. But, the success rates of these modications and upgrades varywidely. We tend to look at some of these modications which helps in eliminating theissues associated with the unit while getting it to produce results in a consistent and reliablemanner. The engineering grade thermoplastics which the university plan to use werealso taken into account to implement in the printers once the MMU2s setup was testedfor reliability. The objective also to create a successful prole sets by tweaking variousparameters in the slicing software for the aforementioned engineering grade materials sothat a ready-to-print prole is available for the corresponding material. During the course of project work, the reliability of the multi material unit was increasedby upgrading few of the components such as idler barrel and selector. Fine tuningof software parameters led to the error free running of the MMU unit by which extensivetesting was possible. Furthermore, engineering grade thermoplastics was able to betested and implemented on the current setup by making use of these software and hardwarechanges. Finally, extensive testing of the multi material unit was done coupled withengineering grade thermoplastics which yielded successful results and the congurationsettings saved for future use in the university.

Page generated in 0.0911 seconds