• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • 1
  • 1
  • Tagged with
  • 13
  • 13
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Non-linear model predictive control strategies for process plants using soft computing approaches

Owa, Kayode Olayemi January 2014 (has links)
The developments of advanced non-linear control strategies have attracted a considerable research interests over the past decades especially in process control. Rather than an absolute reliance on mathematical models of process plants which often brings discrepancies especially owing to design errors and equipment degradation, non-linear models are however required because they provide improved prediction capabilities but they are very difficult to derive. In addition, the derivation of the global optimal solution gets more difficult especially when multivariable and non-linear systems are involved. Hence, this research investigates soft computing techniques for the implementation of a novel real time constrained non-linear model predictive controller (NMPC). The time-frequency localisation characteristics of wavelet neural network (WNN) were utilised for the non-linear models design using system identification approach from experimental data and improve upon the conventional artificial neural network (ANN) which is prone to low convergence rate and the difficulties in locating the global minimum point during training process. Salient features of particle swarm optimisation and a genetic algorithm (GA) were combined to optimise the network weights. Real time optimisation occurring at every sampling instant is achieved using a GA to deliver results both in simulations and real time implementation on coupled tank systems with further extension to a complex quadruple tank process in simulations. The results show the superiority of the novel WNN-NMPC approach in terms of the average controller energy and mean squared error over the conventional ANN-NMPC strategies and PID control strategy for both SISO and MIMO systems.
12

Low-order coupled map lattices for estimation of wake patterns behind vibrating flexible cables

Balasubramanian, Ganapathi Raman 08 September 2003 (has links)
"Fluid-structure interaction arises in a wide array of technological applications including naval and marine hydrodynamics, civil and wind engineering and flight vehicle aerodynamics. When a fluid flows over a bluff body such as a circular cylinder, the periodic vortex shedding in the wake causes fluctuating lift and drag forces on the body. This phenomenon can lead to fatigue damage of the structure due to large amplitude vibration. It is widely believed that the wake structures behind the structure determine the hydrodynamic forces acting on the structure and control of wake structures can lead to vibration control of the structure. Modeling this complex non-linear interaction requires coupling of the dynamics of the fluid and the structure. In this thesis, however, the vibration of the flexible cylinder is prescribed, and the focus is on modeling the fluid dynamics in its wake. Low-dimensional iterative circle maps have been found to predict the universal dynamics of a two-oscillator system such as the rigid cylinder wake. Coupled map lattice (CML)models that combine a series of low-dimensional circle maps with a diffusion model have previously predicted qualitative features of wake patterns behind freely vibrating cables at low Reynolds number. However, the simple nature of the CML models implies that there will always be unmodelled wake dynamics if a detailed, quantitative comparison is made with laboratory or simulated wake flows. Motivated by a desire to develop an improved CML model, we incorporate self-learning features into a new CML that is trained to precisely estimate wake patterns from target numerical simulations and experimental wake flows. The eventual goal is to have the CML learn from a laboratory flow in real time. A real-time self-learning CML capable of estimating experimental wake patterns could serve as a wake model in a future anticipated feedback control system designed to produce desired wake patterns. A new convective-diffusive map that includes additional wake dynamics is developed. Two different self-learning CML models, each capable of precisely estimating complex wake patterns, have been developed by considering additional dynamics from the convective-diffusive map. The new self-learning CML models use adaptive estimation schemes which seek to precisely estimate target wake patterns from numerical simulations and experiments. In the first self-learning CML, the estimator scheme uses a multi-variable least-squares algorithm to adaptively vary the spanwise velocity distribution in order to minimize the state error (difference between modeled and target wake patterns). The second self-learning model uses radial basis function neural networks as online approximators of the unmodelled dynamics. Additional unmodelled dynamics not present in the first self-learning CML model are considered here. The estimator model uses a combination of a multi-variable normalized least squares scheme and a projection algorithm to adaptively vary the neural network weights. Studies of this approach are conducted using wake patterns from spectral element based NEKTAR simulations of freely vibrating cable wakes at low Reynolds numbers on the order of 100. It is shown that the self-learning models accurately and efficiently estimate the simulated wake patterns within several shedding cycles. Next, experimental wake patterns behind different configurations of rigid cylinders were obtained. The self-learning CML models were then used for off-line estimation of the stored wake patterns. With the eventual goal of incorporating low-order CML models into a wake pattern control system in mind, in a related study control terms were added to the simple CML model in order to drive the wake to the desired target pattern of shedding. Proportional, adaptive proportional and non-linear control techniques were developed and their control efficiencies compared."
13

Physical Layer Security with Unmanned Aerial Vehicles for Advanced Wireless Networks

Abdalla, Aly Sabri 08 August 2023 (has links) (PDF)
Unmanned aerial vehicles (UAVs) are emerging as enablers for supporting many applications and services, such as precision agriculture, search and rescue, temporary network deployment, coverage extension, and security. UAVs are being considered for integration into emerging wireless networks as aerial users, aerial relays (ARs), or aerial base stations (ABSs). This dissertation proposes employing UAVs to contribute to physical layer techniques that enhance the security performance of advanced wireless networks and services in terms of availability, resilience, and confidentiality. The focus is on securing terrestrial cellular communications against eavesdropping with a cellular-connected UAV that is dispatched as an AR or ABS. The research develops mathematical tools and applies machine learning algorithms to jointly optimize UAV trajectory and advanced communication parameters for improving the secrecy rate of wireless links, covering various communication scenarios: static and mobile users, single and multiple users, and single and multiple eavesdroppers with and without knowledge of the location of attackers and their channel state information. The analysis is based on established air-to-ground and air-to-air channel models for single and multiple antenna systems while taking into consideration the limited on-board energy resources of cellular-connected UAVs. Simulation results show fast algorithm convergence and significant improvements in terms of channel secrecy capacity that can be achieved when UAVs assist terrestrial cellular networks as proposed here over state-of-the-art solutions. In addition, numerical results demonstrate that the proposed methods scale well with the number of users to be served and with different eavesdropping distributions. The presented solutions are wireless protocol agnostic, can complement traditional security principles, and can be extended to address other communication security and performance needs.

Page generated in 0.052 seconds