• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 6
  • 6
  • 6
  • 5
  • 5
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A dinâmica espacial de engenheiros de ecossistemas / The spatial dynamics of ecosystem engineers

Franco, Caroline 08 February 2018 (has links)
Engenharia de ecossistemas refere-se à habilidade de certos organismos de modificar ativamente o ambiente que os cerca. No contexto ecológico, engenheiros de ecossistemas são espécies-chave que modificam ou criam habitats por meios mecânicos ou usando suas próprias estruturas corporais. Ao criarem novos nichos, castores, recifes de corais e sociedades humanas primitivas garantem tanto a própria existência, quanto a de outros organismos no mesmo ecossistema. Devido a seu caráter de longa duração, algumas destas modificações podem persistir até mais do que a duração de uma população de engenheiros, implicando em consequências evolutivas. O estudo teórico de tal fenômeno ecológico é relativamente recente se comparado com a descrição de interações tipo predador-presa ou de competição. Apenas em 1996 Gurney & Lawton introduziram um modelo descrevendo a dinâmica populacional de engenheiros de ecossistemas, mas a partir de lá poucas modificações apareceram. Aqui nós complementamos tal modelo ao permitir que engenheiros se movam difusivamente através dos sítios de um mapa acoplado, uma formulação discreta no espaço e no tempo. A análise de estabilidade local revela a existência dos regimes estável, cíclico e caótico, com uma cascata de bifurcações levando a órbitas caóticas. Obtemos que apenas para altas taxas de crescimento, onde ocorre comportamento caótico, a dispersão influencia na dinâmica das metapopulações. Neste regime, o caos é suprimido e a extinção pode ser evitada. / Ecosystem engineering refers to the ability of certain organisms to actively modify their surrounding environment. In an ecological context, ecosystem engineers are keystone species that modify or create habitats via mechanical means or by using their own physical structures. By creating new niches, beavers, coral reefs and primitive human societies would guarantee both their and other species survival in a shared ecosystem. Due to its long-lasting character, some of this changes might outlive the engineers populations, leading to evolutionary consequences. The theoretical study of such ecological phenomena is relatively recent when compared to the description of predator-prey or competition interactions. Only in 1996 Gurney & Lawton introduced a model to describe the population dynamics of ecosystem engineers, yet since then few modifications appeared. Here we build on this model by allowing the engineers to move diffusively through the patches of a coupled map lattice, a framework discrete both in time and space. The local stability analysis reveals the existence of stable, cyclic and chaotic regimes, with period-doubling bifurcations leading to chaotic orbits. We find that only for large intrinsic growth rates, where chaotic behavior occurs, dispersal influences the metapopulation dynamics. In this regime, chaos is suppressed and extinction can be avoided.
2

Segmentação e detecção de simetria em imagens via redes de mapas acoplados. / Image segmentation and symmetry detection via coupled map lattices.

Rizzo Junior, Giovanni 30 January 2007 (has links)
Sincronismo é um comportamento dinâmico que pode ser detectado na atividade dos neurônios que formam estruturas corticais, e essa atividade parece ser fundamental para a realização de processos relacionados a aprendizado, compreensão e reconhecimento. Estruturas corticais podem ser modeladas por redes de mapas acoplados. Nessas redes, a existência de solução síncrona é determinada pela equação que governa a atividade de cada mapa, pela topologia de acoplamento entre os mapas e pelos valores dos parâmetros. O enfoque deste trabalho é empregar redes de mapas acoplados voltados à detecção de simetria, e segmentação de imagens, via sincronismo. / Synchronism is a dynamical behavior that can be found in the neural activity of cortical structures, and this behavior seems to be fundamental in learning, understanding and recognition processes. Cortical structures can be modeled by using coupled map lattices. In such lattices, the existence of synchronous solution is determined by the equation that rules the activity of each map, by the coupling topology among the maps, and by the parameter values. The goal of this work is to employ coupled map lattices in symmetry detection and image segmentation, via synchronism.
3

A dinâmica espacial de engenheiros de ecossistemas / The spatial dynamics of ecosystem engineers

Caroline Franco 08 February 2018 (has links)
Engenharia de ecossistemas refere-se à habilidade de certos organismos de modificar ativamente o ambiente que os cerca. No contexto ecológico, engenheiros de ecossistemas são espécies-chave que modificam ou criam habitats por meios mecânicos ou usando suas próprias estruturas corporais. Ao criarem novos nichos, castores, recifes de corais e sociedades humanas primitivas garantem tanto a própria existência, quanto a de outros organismos no mesmo ecossistema. Devido a seu caráter de longa duração, algumas destas modificações podem persistir até mais do que a duração de uma população de engenheiros, implicando em consequências evolutivas. O estudo teórico de tal fenômeno ecológico é relativamente recente se comparado com a descrição de interações tipo predador-presa ou de competição. Apenas em 1996 Gurney & Lawton introduziram um modelo descrevendo a dinâmica populacional de engenheiros de ecossistemas, mas a partir de lá poucas modificações apareceram. Aqui nós complementamos tal modelo ao permitir que engenheiros se movam difusivamente através dos sítios de um mapa acoplado, uma formulação discreta no espaço e no tempo. A análise de estabilidade local revela a existência dos regimes estável, cíclico e caótico, com uma cascata de bifurcações levando a órbitas caóticas. Obtemos que apenas para altas taxas de crescimento, onde ocorre comportamento caótico, a dispersão influencia na dinâmica das metapopulações. Neste regime, o caos é suprimido e a extinção pode ser evitada. / Ecosystem engineering refers to the ability of certain organisms to actively modify their surrounding environment. In an ecological context, ecosystem engineers are keystone species that modify or create habitats via mechanical means or by using their own physical structures. By creating new niches, beavers, coral reefs and primitive human societies would guarantee both their and other species survival in a shared ecosystem. Due to its long-lasting character, some of this changes might outlive the engineers populations, leading to evolutionary consequences. The theoretical study of such ecological phenomena is relatively recent when compared to the description of predator-prey or competition interactions. Only in 1996 Gurney & Lawton introduced a model to describe the population dynamics of ecosystem engineers, yet since then few modifications appeared. Here we build on this model by allowing the engineers to move diffusively through the patches of a coupled map lattice, a framework discrete both in time and space. The local stability analysis reveals the existence of stable, cyclic and chaotic regimes, with period-doubling bifurcations leading to chaotic orbits. We find that only for large intrinsic growth rates, where chaotic behavior occurs, dispersal influences the metapopulation dynamics. In this regime, chaos is suppressed and extinction can be avoided.
4

Segmentação e detecção de simetria em imagens via redes de mapas acoplados. / Image segmentation and symmetry detection via coupled map lattices.

Giovanni Rizzo Junior 30 January 2007 (has links)
Sincronismo é um comportamento dinâmico que pode ser detectado na atividade dos neurônios que formam estruturas corticais, e essa atividade parece ser fundamental para a realização de processos relacionados a aprendizado, compreensão e reconhecimento. Estruturas corticais podem ser modeladas por redes de mapas acoplados. Nessas redes, a existência de solução síncrona é determinada pela equação que governa a atividade de cada mapa, pela topologia de acoplamento entre os mapas e pelos valores dos parâmetros. O enfoque deste trabalho é empregar redes de mapas acoplados voltados à detecção de simetria, e segmentação de imagens, via sincronismo. / Synchronism is a dynamical behavior that can be found in the neural activity of cortical structures, and this behavior seems to be fundamental in learning, understanding and recognition processes. Cortical structures can be modeled by using coupled map lattices. In such lattices, the existence of synchronous solution is determined by the equation that rules the activity of each map, by the coupling topology among the maps, and by the parameter values. The goal of this work is to employ coupled map lattices in symmetry detection and image segmentation, via synchronism.
5

Introdução de quantidades efetivas para o estudo da sincronização e criptografia baseada em sistemas não-síncronos

Szmoski, Romeu Miquéias 31 January 2013 (has links)
Made available in DSpace on 2017-07-21T19:26:03Z (GMT). No. of bitstreams: 1 Romeu Miqueias.pdf: 9797233 bytes, checksum: d4b08f71cb22063247e9bb495366dd55 (MD5) Previous issue date: 2013-01-31 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Synchronization is a dynamical behavior exhibited by a wide range of systems. Neurons, firefly and Josephson junctions are examples of these systems. It is defined as an adjustment of rhythms of oscillating objects due to weak interaction between them, and it is studied using different mathematical models including the coupled map lattices (CMLs). In CML the synchronization corresponds to process in which all state variables become identical at the same instant. Usually we study the CML synchronization by calculating the conditional Lyapunov exponents. However, if the coupling or network topology is time-varying, this exponents are not readily determined. In this work we propose new quantities to study the synchronization in these CMLs. These quantities are defined as weighted averages over all possible topologies and, if the topology is constant, they are equivalent to the usual Lyapunov exponents. We find an analytical expression for the effective quantities when the topology is invariant over translation on the network and demonstrate that an ensemble of short time observations can be used to predict the long-term behavior of the lattice. Also we point that, if network has constant and homogeneous structure, the effective quantities correspond to the projection on the eigenvectors associated with this structure. We show the availability of effective quantities using them to build a lattice with constant topology that exhibits the same synchronization critical properties of the lattice with time-varying topology. Finally, we present a cryptosystem for communication systems based on two replica synchronized networks whose elements are not synchronous. We investigate it as to operation time, robustness and security against intruders. Our results suggest that it is safe and efficient for a wide range of parameters. / A sincronização é um comportamento dinâmico exibido por uma ampla variedade de sistemas naturais tais como neurônios, vaga-lumes e junções Josephson. Ela é definida como um ajuste de ritmos de objetos oscilantes devido a uma fraca interação entre eles, e é estudada usando diferentes modelos matemáticos tais como as redes de mapas acoplados (RMAs). Em uma RMA, o processo de sincronização representa uma evolução conjunta entre todas variáveis de estados. Este processo é geralmente investigado com base nos expoentes de Lyapunov condicionais. No entanto, para redes com topologia variável tais expoentes não são facilmente determinados. Neste trabalho propomos novas quantidades para estudar a sincronização nestas redes. Estas quantidades são definidas como médias ponderadas sobre todas as topologias possíveis e, no caso em que a topologia é constante, equivalem aos expoentes de Lyapunov usuais. Encontramos uma expressão analítica para as quantidades efetivas para o caso em que a topologia é invariante sobre translação na rede e demonstramos que um conjunto de observações sobre um intervalo curto de tempo pode ser usado para predizer o comportamento da rede a longo prazo. Também verificamos que, se a rede possui uma estrutura constante e homogênea, as quantidades efetivas podem ser obtidas considerando a projeção sobre os autovetores associados a esta estrutura. Mostramos a eficácia das quantidades efetivas usando-as para construir uma rede com topologia constante que exibe as mesmas propriedades de sincronização da rede com topologia variável. Por último apresentamos um criptossistema para sistemas de comunicação que é baseado em duas réplicas de redes sincronizadas cujos elementos são não-síncronos. Investigamos este sistema quanto ao tempo de operação, a robustez e a segurança contra intrusos. Nossos resultados sugerem que ele é seguro e eficiente para uma amplo intervalo de parâmetros.
6

Low-order coupled map lattices for estimation of wake patterns behind vibrating flexible cables

Balasubramanian, Ganapathi Raman 08 September 2003 (has links)
"Fluid-structure interaction arises in a wide array of technological applications including naval and marine hydrodynamics, civil and wind engineering and flight vehicle aerodynamics. When a fluid flows over a bluff body such as a circular cylinder, the periodic vortex shedding in the wake causes fluctuating lift and drag forces on the body. This phenomenon can lead to fatigue damage of the structure due to large amplitude vibration. It is widely believed that the wake structures behind the structure determine the hydrodynamic forces acting on the structure and control of wake structures can lead to vibration control of the structure. Modeling this complex non-linear interaction requires coupling of the dynamics of the fluid and the structure. In this thesis, however, the vibration of the flexible cylinder is prescribed, and the focus is on modeling the fluid dynamics in its wake. Low-dimensional iterative circle maps have been found to predict the universal dynamics of a two-oscillator system such as the rigid cylinder wake. Coupled map lattice (CML)models that combine a series of low-dimensional circle maps with a diffusion model have previously predicted qualitative features of wake patterns behind freely vibrating cables at low Reynolds number. However, the simple nature of the CML models implies that there will always be unmodelled wake dynamics if a detailed, quantitative comparison is made with laboratory or simulated wake flows. Motivated by a desire to develop an improved CML model, we incorporate self-learning features into a new CML that is trained to precisely estimate wake patterns from target numerical simulations and experimental wake flows. The eventual goal is to have the CML learn from a laboratory flow in real time. A real-time self-learning CML capable of estimating experimental wake patterns could serve as a wake model in a future anticipated feedback control system designed to produce desired wake patterns. A new convective-diffusive map that includes additional wake dynamics is developed. Two different self-learning CML models, each capable of precisely estimating complex wake patterns, have been developed by considering additional dynamics from the convective-diffusive map. The new self-learning CML models use adaptive estimation schemes which seek to precisely estimate target wake patterns from numerical simulations and experiments. In the first self-learning CML, the estimator scheme uses a multi-variable least-squares algorithm to adaptively vary the spanwise velocity distribution in order to minimize the state error (difference between modeled and target wake patterns). The second self-learning model uses radial basis function neural networks as online approximators of the unmodelled dynamics. Additional unmodelled dynamics not present in the first self-learning CML model are considered here. The estimator model uses a combination of a multi-variable normalized least squares scheme and a projection algorithm to adaptively vary the neural network weights. Studies of this approach are conducted using wake patterns from spectral element based NEKTAR simulations of freely vibrating cable wakes at low Reynolds numbers on the order of 100. It is shown that the self-learning models accurately and efficiently estimate the simulated wake patterns within several shedding cycles. Next, experimental wake patterns behind different configurations of rigid cylinders were obtained. The self-learning CML models were then used for off-line estimation of the stored wake patterns. With the eventual goal of incorporating low-order CML models into a wake pattern control system in mind, in a related study control terms were added to the simple CML model in order to drive the wake to the desired target pattern of shedding. Proportional, adaptive proportional and non-linear control techniques were developed and their control efficiencies compared."

Page generated in 0.0905 seconds