• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Classifying human activities through machine learning

Lannge, Jakob, Majed, Ali January 2018 (has links)
Klassificering av dagliga aktiviteter (ADL) kan användas i system som bevakar människors aktiviteter i olika syften. T.ex., i nödsituationssystem. Med machine learning och bärbara sensor som samlar in data kan ADL klassificeras med hög noggrannhet. I detta arbete, ett proof-of-concept system med tre olika machine learning algoritmer utvärderas och jämförs mellan tre olika dataset, ett som är allmänt tillgängligt på (Ugulino, et al., 2012), och två som har samlats in i rapporten med hjälp av en android enhet. Algoritmerna som har använts är: Multiclass Decision Forest, Multiclass Decision Jungle and Multiclass Neural Network. Sensorerna som har använts är en accelerometer och ett gyroskop. Resultatet visar hur ett konceptuellt system kan byggas i Azure Machine Learning Studio, och hur tre olika algoritmer presterar vid klassificering av tre olika dataset. En algoritm visar högre precision vid klassning av Ugolino’s dataset, jämfört med machine learning modellen som ursprungligen används i rapporten. / Classifying Activities of daily life (ADL) can be used in a system that monitor people’s activities for different purposes. For example, in emergency systems. Machine learning is a way to classify ADL with high accuracy, using wearable sensors as an input. In this paper, a proof-of-concept system consisting of three different machine learning algorithms is evaluated and compared between tree different datasets, one publicly available at (Ugulino, et al., 2012), and two collected in this paper using an android device’s accelerometer and gyroscope sensor. The algorithms are: Multiclass Decision Forest, Multiclass Decision Jungle and Multiclass Neural Network. The two sensors used are an accelerometer and a gyroscope. The result shows how a system can be implemented using Azure Machine Learning Studio, and how three different algorithms performs when classifying three different datasets. One algorithm achieves a higher accuracy compared to the machine learning model initially used with the Ugolino data set.

Page generated in 0.0783 seconds