• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Phosphatidylethanolamine regulates the function and the structure of LmrP, a bacterial multidrug transporter protein associated to antibiotic resistance

Hakizimana, Pierre 05 September 2008 (has links)
The multidrug transporter LmrP, member of the major facilitator superfamily (MFS), confers L. lactis and recombinant E. coli cells resistance to an array of cytotoxic compounds including antibiotics. LmrP mediates drug extrusion from the plasma membrane by an electrogenic proton/drug exchange reaction, whereby a positively charged substrate may move towards the external medium in exchange for two or more protons moving towards the cytoplasm. Recent studies have suggested that MFS transporters require phosphatidylethanolamine (PE) for function and proper topology. However, the specificity of the PE requirement, as well as the contribution of the electrochemical gradient (the driving force of the substrate transport) to this lipid requirement was not addressed. Here we report a new approach for addressing PE specific requirement for the function and the structure of membranes transporters. We used methyl-PE and dimethyl-PE analogs of PE to show that only replacement of the three hydrogens by methyl moieties leads to changes in the biochemical and biophysical properties of the reconstituted protein. This suggests that LmrP does not depend on the bulk properties of the phospholipids tested but solely on the hydrogen bonding ability of the headgroup. We then show that a single point mutation in LmrP, D68C, is sufficient to recapitulate precisely every biochemical and biophysical effect observed when PE is replaced by phosphatidylcholine (PC) ( including energy transfer between the protein tryptophan residues and the lipid headgroups). We conclude that the negatively charged Asp-68 is likely to participate in the interaction with PE and that such interaction is required for proton gradient sensing, substrate binding, and transport. Because Asp-68 belongs to a highly conserved motif in the Major Facilitator Superfamily (which includes LacY and EmrD), this interaction might be a general feature of these transporters that is involved in proton gradient sensing and lipid dependence.
2

Phosphatidylethanolamine regulates the structure and function of HorA, a bacterial multidrug transporter

Gustot, Adelin 03 November 2009 (has links)
The biological membrane surrounding the living cell provides a sealed barrier that tightly regulates the interactions with the outside environment. A large number of integral membrane proteins mediate these interactions and are involved in a wide variety of biological processes. An increasing number of studies have led to the conclusion that lipids provide more than a hydrophobic solvent for membrane proteins, and that interactions between lipids and proteins are required to allow protein function. ABC transporters are one of the most important family of membrane proteins. However, the importance of their lipidic environment is largely unknown. Only a few studies showed that their activity was dependent on the lipidic composition of the surrounding bilayer. The bacterial ABC transporter HorA was used as a model to probe the influence of the lipidic environment on that class of membrane proteins. HorA is a multidrug transporter expressed in Lactobacillus brevis, a Gram-positive beer spoilage bacterium. It turned out that phosphatidylethanolamine (PE) was indispensable to maintain both the activity and the structural integrity of HorA. Surprisingly, replacement of PE by the chemically related PC (phosphatidylcholine) did not led to the suppression of HorA activity, but to an unexpected phenotype. Whereas the cytoplasmic domains of HorA were still able to hydrolyze ATP, the membrane parts of the transporter were unable to use that energy to mediate substrate transport. Using several biophysical methods particularly adapted to the study of reconstituted systems, we showed that the structure of HorA is strongly altered by this lipid replacement. In particular, the structural organization of the transmembrane domains of the protein is strongly affected.
3

Phosphatidylethanolamine regulates the structure and function of HorA, a bacterial multidrug transporter

Gustot, Adelin 03 November 2009 (has links)
The biological membrane surrounding the living cell provides a sealed barrier that tightly regulates the interactions with the outside environment. A large number of integral membrane proteins mediate these interactions and are involved in a wide variety of biological processes. An increasing number of studies have led to the conclusion that lipids provide more than a hydrophobic solvent for membrane proteins, and that interactions between lipids and proteins are required to allow protein function. ABC transporters are one of the most important family of membrane proteins. However, the importance of their lipidic environment is largely unknown. Only a few studies showed that their activity was dependent on the lipidic composition of the surrounding bilayer. The bacterial ABC transporter HorA was used as a model to probe the influence of the lipidic environment on that class of membrane proteins.<p><p> HorA is a multidrug transporter expressed in Lactobacillus brevis, a Gram-positive beer spoilage bacterium. It turned out that phosphatidylethanolamine (PE) was indispensable to maintain both the activity and the structural integrity of HorA.<p> Surprisingly, replacement of PE by the chemically related PC (phosphatidylcholine) did not led to the suppression of HorA activity, but to an unexpected phenotype. Whereas the cytoplasmic domains of HorA were still able to hydrolyze ATP, the membrane parts of the transporter were unable to use that energy to mediate substrate transport. Using several biophysical methods particularly adapted to the study of reconstituted systems, we showed that the structure of HorA is strongly altered by this lipid replacement. In particular, the structural organization of the transmembrane domains of the protein is strongly affected.<p> / Doctorat en Sciences agronomiques et ingénierie biologique / info:eu-repo/semantics/nonPublished
4

Phosphatidylethanolamine regulates the function and the structure of LmrP, a bacterial multidrug transporter protein associated to antibiotic resistance

Hakizimana, Pierre 05 September 2008 (has links)
The multidrug transporter LmrP, member of the major facilitator superfamily (MFS), confers L. lactis and recombinant E. coli cells resistance to an array of cytotoxic compounds including antibiotics. LmrP mediates drug extrusion from the plasma membrane by an electrogenic proton/drug exchange reaction, whereby a positively charged substrate may move towards the external medium in exchange for two or more protons moving towards the cytoplasm. Recent studies have suggested that MFS transporters require phosphatidylethanolamine (PE) for function and proper topology. However, the specificity of the PE requirement, as well as the contribution of the electrochemical gradient (the driving force of the substrate transport) to this lipid requirement was not addressed. Here we report a new approach for addressing PE specific requirement for the function and the structure of membranes transporters. We used methyl-PE and dimethyl-PE analogs of PE to show that only replacement of the three hydrogens by methyl moieties leads to changes in the biochemical and biophysical properties of the reconstituted protein. This suggests that LmrP does not depend on the bulk properties of the phospholipids tested but solely on the hydrogen bonding ability of the headgroup. We then show that a single point mutation in LmrP, D68C, is sufficient to recapitulate precisely every biochemical and biophysical effect observed when PE is replaced by phosphatidylcholine (PC) ( including energy transfer between the protein tryptophan residues and the lipid headgroups). We conclude that the negatively charged Asp-68 is likely to participate in the interaction with PE and that such interaction is required for proton gradient sensing, substrate binding, and transport. Because Asp-68 belongs to a highly conserved motif in the Major Facilitator Superfamily (which includes LacY and EmrD), this interaction might be a general feature of these transporters that is involved in proton gradient sensing and lipid dependence.<p> / Doctorat en Sciences / info:eu-repo/semantics/nonPublished

Page generated in 0.1158 seconds