• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Matériaux « uniques » pour cellules solaires organiques mono-composant / « Unique » materials for single-component organic solar cells

Labrunie, Antoine 18 December 2017 (has links)
Au cours des dernières années, le développement des cellules organiques à réseaux interpénétrés a permis d’améliorer les rendements de conversion photovoltaïque (PV). Ces dispositifs incorporent une couche active constituée d’un mélange d’un matériau donneur d’électron (D) et d’un matériau accepteur d’électron (A). La réalisation de ces cellules requiert une optimisation minutieuse de ce mélange et de la morphologie de cette couche photo-active qui en résulte. Cette dernière peut cependant évoluer spontanément vers une ségrégation de phase, généralement délétère pour les performances PV. Une solution possible, et relativement peu étudiée, consiste à lier chimiquement le donneur D et l’accepteur A par un espaceur non-conjugué. Les travaux décrits dans ce manuscrit portent sur la synthèse et la caractérisation d’assemblages moléculaires de type D-σ-A ainsi que leur utilisation comme matériau dit « unique » pour la fabrication de cellules solaires organiques mono composant. Une première famille de dyades et triades à base d’un bloc donneur de type quaterthiophène a été étudiée. Cette partie décrit la méthodologie générale d’assemblage des blocs D et A via une réaction de cycloaddition de type Huisgen. Au cours des chapitres suivant, plusieurs dyades basées sur un bloc donneur « push-pull » ont été synthétisées puis caractérisées. Les performances PV de ces composés ont été évaluées au sein de cellules solaires mono-composant et les meilleurs rendements de conversion, atteignant 1.4 %, rivalisent avec l’état de l’art. / Over the last few years, the development of bulk heterojunction organic solar cells (BHJ OSCs) led to significant increase in photovoltaic (PV) efficiency. Such devices are based on interpenetrated networks of an electron-donor material (D) and an electron-acceptor material (A) constituting the active layer. Nevertheless a careful optimization of the morphology is required to reach high power conversion efficiency. Furthermore, this optimized morphology can evolve towards spontaneous phase segregation which can be detrimental for the PV performances. To circumvent these limitations, a relatively unexplored approach relies on the use of a material where the donor and the acceptor moieties are covalently linked to each other through a nonconjugated π-connector. In this context, the work reported herein describes the synthesis and characterization of various molecular D-σ-A assemblies, as well as their preliminary evaluation as “unique” material for the realisation of single component organic solar cells (SC-OSCs). A first family of dyads and triads, based on quaterthiophene moieties as donor block, was studied. A general methodology to assemble the two D and A blocks via a Huisgen-type click-chemistry is described. Then, in the next chapters, several dyads based on a “push-pull” donor block have been synthesized and characterized. The PV performances of these compounds have been evaluated in SC-OSCs leading to power conversion efficiency up to 1.4 %, a value close to the state of the art.
2

Caractérisation moléculaire du rôle de facteurs accessoires ArgR et PepA au niveau de la recombinaison spécifique sur le site cer

Delesques, Jérémy R. 07 1900 (has links)
Mon projet de recherche avait pour but de caractériser le rôle de deux protéines, ArgR et PepA, qui agissent en tant que facteurs accessoires de la recombinaison au niveau de deux sites cer du plasmide ColE1 présent dans la bactérie Escherichia coli. Ces deux protéines, couplées aux deux recombinases à tyrosine XerC et XerD, permettent la catalyse de la recombinaison site spécifique au niveau de la séquence cer, convertissant les multimères instables de ColE1 en monomères stables. Cette étude a principalement porté sur la région C-terminale de la protéine ArgR. Cette région de la protéine ArgR possède une séquence en acides-aminés et une structure similaire à celle de la protéine AhrC de Bacillus subtilis. De plus, AhrC, le répresseur de l’arginine de cette bactérie, est capable de complémenter des Escherichia coli mutantes déficientes en ArgR. Les régions C-terminales de ces protéines, montrent une forte similarité. De précédents travaux dans notre laboratoire ont démontré que des mutants d’ArgR comprenant des mutations dans cette région, en particulier les mutants ArgR149, une version tronquée d’ArgR de 149 acides-aminés, et ArgR5aa, une version comprenant une insertion de cinq acides-aminés dans la partie C-terminale, perdaient la capacité de permettre la recombinaison au niveau de deux sites cer présents dans le plasmide pCS210. Malgré cette incapacité à promouvoir la réaction de recombinaison en cer, ces deux mutants étaient toujours capables de se lier spécifiquement à l’ADN et de réprimer une fusion argA :: lacZ. Dans ce travail, les versions mutantes et sauvages d’ArgR furent surexprimées en tant que protéines de fusion 6-histidine. Des analyses crosslinking ont montré que la version sauvage et ArgR5aa pouvaient former des hexamères in-vitro de manière efficace, alors qu’ArgR149 formait des multimères de plus faible poids moléculaire. Des formes tronquées d’ArgR qui comportaient 150 acides-aminés ou plus, étaient encore capables de permettre la recombinaison en cer. Les mutants par substitution ArgRL149A et ArgRL151A ont tous montré que les substitutions d’un seul acide-aminé au sein de cette région avaient peu d’effets sur la recombinaison en cer. Les expériences de crosslinking protéine-à-protéine ont montré que le type sauvage et les formes mutantes d’ArgR étaient capables d’interagir avec la protéine accessoire PepA, également impliquée dans la recombinaison en cer. Les expériences de recombinaison in-vitro utilisant la forme sauvage et les formes mutantes d’ArgR combinées avec les protéines PepA, XerC et XerD purifiées, ont montré que le mutant ArgR149 ne soutenait pas la recombinaison, mais que le mutant ArgR5aa permettait la formation d’une jonction d’Holliday. Des expériences de topologie ont montré que PepA était capable de protéger l’ADN de la topoisomérase 1, et d’empêcher ArgRWt de se lier à l’ADN. Les deux mutants ArgR149 et ArgR5aa protègent aussi l’ADN avec plus de surenroulements. Quand on ajoute PepA, les profils de migration montrent un problème de liaison des deux mutants avec PepA. D’autres expériences impliquant le triplet LEL (leucine-acide glutamique-leucine) et les acides-aminés alentour devraient être réalisés dans le but de connaitre l’existence d’un site de liaison potentiel pour PepA. / My research project involved the role of two proteins, ArgR and PepA, which act as accessory factors in the ColE1 cer recombination system from the gram negative bacteria Escherichia coli. These two proteins, in addition to the tyrosine recombinases XerC and XerD, catalyze a site-specific recombination event at the cer sequence which converts unstable multimeric forms of ColE1 into more stable monomers. Our study mainly focused on the C-terminal end of the ArgR. This region of the ArgR protein possesses a structural and amino acid sequence similarity with the AhrC protein from Bacillus subtilis. Moreover, AhrC, the Arginine repressor of this bacterium, is able to complement Escherichia coli mutants deficient in ArgR. The C-terminal regions of these proteins, display a very high region of similarity. Previous work from our laboratory has shown that ArgR mutants with mutations in this region, especially the mutants ArgR149, a truncated 149 amino acids form of ArgR, and ArgR5aa, a form containing a five amino acid insertion in the C-terminal part, lost the ability to perform a recombination reaction at two cer sites in the plasmid pCS210. Despite this defect in promoting cer recombination, the mutants were still able to bind specifically to DNA, and to repress an argA :: lacZ genetic fusion. In this work, both wild type and mutant ArgR proteins were overexpressed as 6-histidine fusion proteins. Crosslinking analysis showed that both wild type and ArgR5aa efficiently formed hexamers in vitro, while ArgR149 formed lower molecular weight multimers. Truncated forms of ArgR that were 150 amino acids or longer, were able to support cer recombination. The substitution mutants between positions 149 to 151 all showed that single amino acid substitutions at this region had little effect on cer recombination. Protein-protein crosslinking experiments showed that wild type and mutant forms of ArgR, were able to interact with and the other accessory protein involved in cer recombination, PepA. In vitro recombination experiments using wild type and mutant forms of ArgR, combined with purified PepA, XerC and XerD showed that the ArgR149 mutant did not support recombination, but the ArgR5aa mutant did promote Holliday junction formation, raising the possibility that these two mutants interact differently with the Xer recombination machinery. Topology experiments showed that after adding topoisomerase 1, PepA is able to protect DNA from topoisomerase 1, and prevent ArgRWt binding to DNA. The two mutants ArgR149 and ArgR5aa are protecting DNA with more supercoiling. When PepA is added, migration profiles with the two mutants showed a binding problem with PepA. Other experiments involving the LEL triplet (leucine-glutamic acid-leucine) and amino-acids around it should be done in order to know the existence of a possible binding site for PepA.
3

Caractérisation moléculaire du rôle de facteurs accessoires ArgR et PepA au niveau de la recombinaison spécifique sur le site cer

Delesques, Jérémy R. 07 1900 (has links)
Mon projet de recherche avait pour but de caractériser le rôle de deux protéines, ArgR et PepA, qui agissent en tant que facteurs accessoires de la recombinaison au niveau de deux sites cer du plasmide ColE1 présent dans la bactérie Escherichia coli. Ces deux protéines, couplées aux deux recombinases à tyrosine XerC et XerD, permettent la catalyse de la recombinaison site spécifique au niveau de la séquence cer, convertissant les multimères instables de ColE1 en monomères stables. Cette étude a principalement porté sur la région C-terminale de la protéine ArgR. Cette région de la protéine ArgR possède une séquence en acides-aminés et une structure similaire à celle de la protéine AhrC de Bacillus subtilis. De plus, AhrC, le répresseur de l’arginine de cette bactérie, est capable de complémenter des Escherichia coli mutantes déficientes en ArgR. Les régions C-terminales de ces protéines, montrent une forte similarité. De précédents travaux dans notre laboratoire ont démontré que des mutants d’ArgR comprenant des mutations dans cette région, en particulier les mutants ArgR149, une version tronquée d’ArgR de 149 acides-aminés, et ArgR5aa, une version comprenant une insertion de cinq acides-aminés dans la partie C-terminale, perdaient la capacité de permettre la recombinaison au niveau de deux sites cer présents dans le plasmide pCS210. Malgré cette incapacité à promouvoir la réaction de recombinaison en cer, ces deux mutants étaient toujours capables de se lier spécifiquement à l’ADN et de réprimer une fusion argA :: lacZ. Dans ce travail, les versions mutantes et sauvages d’ArgR furent surexprimées en tant que protéines de fusion 6-histidine. Des analyses crosslinking ont montré que la version sauvage et ArgR5aa pouvaient former des hexamères in-vitro de manière efficace, alors qu’ArgR149 formait des multimères de plus faible poids moléculaire. Des formes tronquées d’ArgR qui comportaient 150 acides-aminés ou plus, étaient encore capables de permettre la recombinaison en cer. Les mutants par substitution ArgRL149A et ArgRL151A ont tous montré que les substitutions d’un seul acide-aminé au sein de cette région avaient peu d’effets sur la recombinaison en cer. Les expériences de crosslinking protéine-à-protéine ont montré que le type sauvage et les formes mutantes d’ArgR étaient capables d’interagir avec la protéine accessoire PepA, également impliquée dans la recombinaison en cer. Les expériences de recombinaison in-vitro utilisant la forme sauvage et les formes mutantes d’ArgR combinées avec les protéines PepA, XerC et XerD purifiées, ont montré que le mutant ArgR149 ne soutenait pas la recombinaison, mais que le mutant ArgR5aa permettait la formation d’une jonction d’Holliday. Des expériences de topologie ont montré que PepA était capable de protéger l’ADN de la topoisomérase 1, et d’empêcher ArgRWt de se lier à l’ADN. Les deux mutants ArgR149 et ArgR5aa protègent aussi l’ADN avec plus de surenroulements. Quand on ajoute PepA, les profils de migration montrent un problème de liaison des deux mutants avec PepA. D’autres expériences impliquant le triplet LEL (leucine-acide glutamique-leucine) et les acides-aminés alentour devraient être réalisés dans le but de connaitre l’existence d’un site de liaison potentiel pour PepA. / My research project involved the role of two proteins, ArgR and PepA, which act as accessory factors in the ColE1 cer recombination system from the gram negative bacteria Escherichia coli. These two proteins, in addition to the tyrosine recombinases XerC and XerD, catalyze a site-specific recombination event at the cer sequence which converts unstable multimeric forms of ColE1 into more stable monomers. Our study mainly focused on the C-terminal end of the ArgR. This region of the ArgR protein possesses a structural and amino acid sequence similarity with the AhrC protein from Bacillus subtilis. Moreover, AhrC, the Arginine repressor of this bacterium, is able to complement Escherichia coli mutants deficient in ArgR. The C-terminal regions of these proteins, display a very high region of similarity. Previous work from our laboratory has shown that ArgR mutants with mutations in this region, especially the mutants ArgR149, a truncated 149 amino acids form of ArgR, and ArgR5aa, a form containing a five amino acid insertion in the C-terminal part, lost the ability to perform a recombination reaction at two cer sites in the plasmid pCS210. Despite this defect in promoting cer recombination, the mutants were still able to bind specifically to DNA, and to repress an argA :: lacZ genetic fusion. In this work, both wild type and mutant ArgR proteins were overexpressed as 6-histidine fusion proteins. Crosslinking analysis showed that both wild type and ArgR5aa efficiently formed hexamers in vitro, while ArgR149 formed lower molecular weight multimers. Truncated forms of ArgR that were 150 amino acids or longer, were able to support cer recombination. The substitution mutants between positions 149 to 151 all showed that single amino acid substitutions at this region had little effect on cer recombination. Protein-protein crosslinking experiments showed that wild type and mutant forms of ArgR, were able to interact with and the other accessory protein involved in cer recombination, PepA. In vitro recombination experiments using wild type and mutant forms of ArgR, combined with purified PepA, XerC and XerD showed that the ArgR149 mutant did not support recombination, but the ArgR5aa mutant did promote Holliday junction formation, raising the possibility that these two mutants interact differently with the Xer recombination machinery. Topology experiments showed that after adding topoisomerase 1, PepA is able to protect DNA from topoisomerase 1, and prevent ArgRWt binding to DNA. The two mutants ArgR149 and ArgR5aa are protecting DNA with more supercoiling. When PepA is added, migration profiles with the two mutants showed a binding problem with PepA. Other experiments involving the LEL triplet (leucine-glutamic acid-leucine) and amino-acids around it should be done in order to know the existence of a possible binding site for PepA.

Page generated in 0.0551 seconds