• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Using Natural Language Processing and Machine Learning for Analyzing Clinical Notes in Sickle Cell Disease Patients

Khizra, Shufa January 2018 (has links)
No description available.
2

Classifying Urgency : A Study in Machine Learning for Classifying the Level of Medical Emergency of an Animal’s Situation

Strallhofer, Daniel, Ahlqvist, Jonatan January 2018 (has links)
This paper explores the use of Naive Bayes as well a Linear Support Vector Machines in order to classify a text based on the level of medical emergency. The primary source of testing will be an online veterinarian service’s customer data. The aspects explored are whether a single text gives enough information for a medical decision to be made and if there are alternative data gathering processes that would be preferred. Past research has proven that text classifiers based on Naive Bayes and SVMs can often give good results. We show how to optimize the results so that important decisions can be made with these classifications as a basis. Optimal data gathering procedures will be a part of this optimization process. The business applications of such a venture will also be discussed since implementing such a system in an online medical service will possibly affect customer flow, goodwill, cost/revenue, and online competitiveness. / Denna studie utforskar användandet av Naive Bayes samt Linear Support Vector Machines för att klassificera en text på en medicinsk skala. Den huvudsakliga datamängden som kommer att användas för att göra detta är kundinformation från en online veterinär. Aspekter som utforskas är om en enda text kan innehålla tillräckligt med information för att göra ett medicinskt beslut och om det finns alternativa metoder för att samla in mer anpassade datamängder i framtiden. Tidigare studier har bevisat att både Naive Bayes och SVMs ofta kan nå väldigt bra resultat. Vi visar hur man kan optimera resultat för att främja framtida studier. Optimala metoder för att samla in datamängder diskuteras som en del av optimeringsprocessen. Slutligen utforskas även de affärsmässiga aspekterna utigenom implementationen av ett datalogiskt system och hur detta kommer påverka kundflödet, goodwill, intäkter/kostnader och konkurrenskraft.
3

Optimising Machine Learning Models for Imbalanced Swedish Text Financial Datasets: A Study on Receipt Classification : Exploring Balancing Methods, Naive Bayes Algorithms, and Performance Tradeoffs

Hu, Li Ang, Ma, Long January 2023 (has links)
This thesis investigates imbalanced Swedish text financial datasets, specifically receipt classification using machine learning models. The study explores the effectiveness of under-sampling and over-sampling methods for Naive Bayes algorithms, collaborating with Fortnox for a controlled experiment. Evaluation metrics compare balancing methods regarding the accuracy, Matthews's correlation coefficient (MCC) , F1 score, precision, and recall. Findings contribute to Swedish text classification, providing insights into balancing methods. The thesis report examines balancing methods and parameter tuning on machine learning models for imbalanced datasets. Multinomial Naive Bayes (MultiNB) algorithms in Natural language processing (NLP) are studied, with potential application in image classification for assessing industrial thin component deformation. Experiments show balancing methods significantly affect MCC and recall, with a recall-MCC-accuracy tradeoff. Smaller alpha values generally improve accuracy.  Synthetic Minority Oversampling Technique  (SMOTE) and Tomek's algorithm for removing links developed in 1976 by Ivan Tomek. First Tomek, then SMOTE (TomekSMOTE)  yield promising accuracy improvements. Due to time constraints, Over-sampling using SMOTE and cleaning using Tomek links. First SMOTE, then Tomek (SMOTETomek) training is incomplete. This thesis report finds the best MCC is achieved when $\alpha$ is 0.01 on imbalanced datasets.
4

All Negative on the Western Front: Analyzing the Sentiment of the Russian News Coverage of Sweden with Generic and Domain-Specific Multinomial Naive Bayes and Support Vector Machines Classifiers / På västfronten intet gott: attitydanalys av den ryska nyhetsrapporteringen om Sverige med generiska och domänspecifika Multinomial Naive Bayes- och Support Vector Machines-klassificerare

Michel, David January 2021 (has links)
This thesis explores to what extent Multinomial Naive Bayes (MNB) and Support Vector Machines (SVM) classifiers can be used to determine the polarity of news, specifically the news coverage of Sweden by the Russian state-funded news outlets RT and Sputnik. Three experiments are conducted.  In the first experiment, an MNB and an SVM classifier are trained with the Large Movie Review Dataset (Maas et al., 2011) with a varying number of samples to determine how training data size affects classifier performance.  In the second experiment, the classifiers are trained with 300 positive, negative, and neutral news articles (Agarwal et al., 2019) and tested on 95 RT and Sputnik news articles about Sweden (Bengtsson, 2019) to determine if the domain specificity of the training data outweighs its limited size.  In the third experiment, the movie-trained classifiers are put up against the domain-specific classifiers to determine if well-trained classifiers from another domain perform better than relatively untrained, domain-specific classifiers.  Four different types of feature sets (unigrams, unigrams without stop words removal, bigrams, trigrams) were used in the experiments. Some of the model parameters (TF-IDF vs. feature count and SVM’s C parameter) were optimized with 10-fold cross-validation.  Other than the superior performance of SVM, the results highlight the need for comprehensive and domain-specific training data when conducting machine learning tasks, as well as the benefits of feature engineering, and to a limited extent, the removal of stop words. Interestingly, the classifiers performed the best on the negative news articles, which made up most of the test set (and possibly of Russian news coverage of Sweden in general).

Page generated in 0.1014 seconds