• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 73
  • 18
  • 11
  • 11
  • 1
  • 1
  • Tagged with
  • 141
  • 39
  • 35
  • 23
  • 22
  • 21
  • 20
  • 20
  • 18
  • 17
  • 15
  • 15
  • 14
  • 14
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Infrared multiphoton induced reactions of organic esters

Rio, Valentin C January 2011 (has links)
Digitized by Kansas Correctional Industries
22

Intensity-resolved Above Threshold Ionization Yields of Atoms with Ultrashort Laser Pulses

Hart, Nathan Andrew 2011 August 1900 (has links)
The above threshold ionization (ATI) spectra provide a diversity of information about a laser-atom ionization process such as laser intensity, pulse duration, carrier envelope phase, and atomic energy level spacing. However, the spatial distribution of intensities inherent in all laser beams reduces the resolution of this information. This research focuses on recovering the intensity-resolved ATI spectra from experimental data using a deconvolution algorithm. Electron ionization yields of xenon were measured for a set of laser pulse intensities using a time of flight (TOF) setup. Horizontally polarized, unchirped, 50fs pulses were used in the ionization process. All laser parameters other than the radiation intensity were held constant over the set of intensity measurements. A deconvolution algorithm was developed based on the experimental parameters. Then the deconvolution algorithm was applied to the experimental data to obtain the intensity-resolved total yield probability and ATI spectra. Finally, an error analysis was performed to determine the stability and accuracy of the algorithm as well as the quality of the data. It was found that the algorithm produced greater contrast for peaks in the ATI spectra where atom specific resonant behavior is observed. Additionally, the total yield probability showed that double ionization may be observed in the ionization yield. The error analysis revealed that the algorithm was stable under the experimental conditions for a range of intensities.
23

Detection approaches for the analysis of volume limited biological samples /

Gostkowski, Michael Leonard, January 2000 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 2000. / Vita. Includes bibliographical references. Available also in a digital version from Dissertation Abstracts.
24

Probing topographical influences on biofilm formation using dynamic-mask multiphoton lithography

Fox, Michelle Ann 26 July 2012 (has links)
It has only been within recent decades that the complexity and heterogeneity of the biofilm mode of bacterial existence has been widely appreciated. Biofilms have persisted for billions of years as social communities of cells aggregated and attached on surfaces, and today they are both necessary and harmful within the human body and our surrounding environment. They show extremely high antibiotic resistance relative to planktonic cells and are sources of persistent infections. Biofilms are also the most common cause of failure for indwelling biomedical devices and implants. As a result, research efforts and commercial developments are focusing on creating better biomaterials that prevent bacterial attachment to surfaces leading to biofilm formation. While chemical methods to combat bacterial infections have been around for over a century in the form of antimicrobials, relatively little is known about how topographical methods can prevent bacterial attachment to surfaces. The reason for this is that micro- and nano-scale fabrication technologies (which are needed to produce topographies on size scales that might be expected to influence bacterial attachment) are fairly recent developments. In this thesis work, microscale topographies were developed for probing and influencing bacterial attachment to surfaces using dynamic-mask multiphoton lithography. Multiphoton lithography is an inherently three-dimensional fabrication technique. When combined with the dynamic-mask-based technology developed in the Shear laboratory, it allows for rapid prototyping of 3D structures of arbitrary complexity with submicron resolution in the radial dimension. A variety of topographical approaches for influencing bacterial attachment of Pseudomonas aeruginosa cells were explored within this work. P. aeruginosa was selected as a model organism for biofilm formation and because it is commonly isolated from infections associated with biomedical implant devices. Topographical approaches included the design of topographies based on microscale surfaces of naturally-antifouling leaves and mathematical functions, pillars, and surfaces containing various sizes and geometries of holes. Challenges relating to an imaging artifact caused by light scattering induced by the surfaces shed light on issues associated with assessing bacterial attachment levels on microscale topographical surfaces. Finally, future directions for this work are presented with ideas that extend into the nanoscale regime. / text
25

Tracking neuronal content using capillary electrophoresis with multiphoton excitation of fluorescence

Wise, Dana Diane 28 August 2008 (has links)
Not available / text
26

Defining cellular microenvironments using multiphoton lithography

Kaehr, Bryan James, 1975- 28 August 2008 (has links)
To understand the chemistry of life processes in detail is largely a challenge of resolving them in their native, cellular environment. Cell culture, first developed a century ago, has proven to be an essential tool for reductionist studies of cellular biochemistry and development. However, for the technology of cell culture to move forward and address increasingly complex problems, in vitro environments must be refined to better reflect the cellular environment in vivo. This dissertation work has focused on the development of methods to define cellular microenvironments using the high resolution, 3D capabilities of multiphoton lithography. Here, site-specific photochemistry using multiphoton excitation is applied to the photocrosslinking of proteins, providing the means to organize bioactive species into well-defined 3D microenvironments. Further, conditions have been identified that enable microfabrication to be performed in the presence of cells -- allowing cell outgrowth and motility to be directed in real time. In addition to the intrinsic chemical functionality of microfabricated protein structures, 3D protein matrices are shown to respond mechanically to changes in the chemical environment, enabling new avenues for micro-scale actuation to be explored. Complex 2D and 3D protein photocrosslinking is further facilitated by integrating transparency and automated reflectance photomasks into the fabrication system. These advances could be transformative in efforts to fabricate precise cellular scaffolding that replicates the morphological (and potentially biochemical) features of in vivo tissue microenvironments. Finally, these methods are applied to the study of microorganism behavior with single-cell resolution. Microarchitectures are designed that allow the position and motion of motile bacterial to generate directional microfluidic flow -- providing a foundation to develop micro-scale devices powered by cells. / text
27

Applications of multiphoton-excited photochemistry to microsecond capillary electrophoresis, photolithography, and the development of smart materials

Ritschdorff, Eric Thomas 20 October 2011 (has links)
Laser-based techniques have become essential tools for probing biological molecules in systems that demand high spatial and temporal control. This dissertation presents the development of micro-analytical techniques based on multiphoton excitation (MPE) to promote highly localized, three-dimensional (3D) photochemistry of biologically relevant molecules on submicron dimensions. Strategies based on capillary electrophoresis (CE) have been developed for the rapid separation and spectroscopic analysis of short-lived photochemical reaction products. High-speed separation and analysis are achieved through a combination of very high electric fields and a laser-based optical system that uses MPE for both the generation and detection of hydroxyindole photoproducts on the time scale of microseconds. MPE was also used for the development of photolithographic techniques for the creation of microstructured protein-based materials with highly defined three-dimensional (3D) topographies. Specifically, a multiphoton lithographic (MPL) technique was developed that used a low-cost microchip laser for the rapid prototyping of 3D microarchitectures when combined with dynamic optical masking. Furthermore, MPL was used to create novel “smart” biomaterials that reproducibly respond with tunable actuation to changes in the local chemical and thermal environment. The utility of these materials for creating biocompatible cellular microenvironments was demonstrated and presents a novel approach for studying small populations of microorganisms. Finally, through the development of a multifocal approach that used multiple laser beams to promote the photocrosslinking of biological molecules, the speed and versatility of MPL was extended to allow both the parallel fabrication of 3D microstructures and the rapid creation of large-scale biomaterials with highly defined spatial features. / text
28

Multi-photon ionisation of gases in laser beams

Scheffler, T. B. January 1970 (has links)
No description available.
29

On the Structure of Metal Oxalate Anions: Theory and Experiment

Hamilton, Jenna Victoria January 2015 (has links)
Anionic metal-oxalate complexes have been generated in the gas phase and an attempt at determining plausible structures were made. Two different experimental techniques were coupled to mass spectrometry: Infrared Multiphoton Dissociation (IRMPD) and ion mobility. Both techniques were compared to theoretical structures calculated using various levels of theory. With the use of IRMPD, frequencies were generated for each complex and compared to theoretical frequencies. Plausible structures for all complexes were found using the M-series of density functional levels of the theory when the 6-311+gd basis set was used and Bhandhlyp functional was appropriate for the lanl2dz basis set. Using ion mobility allowed for collision cross-sections to be calculated and compared to theoretical collision cross-sections of the various structures. Unfortunately no plausible structures were determined using this technique due to a lack of calibrants for the negative mode of ion mobility.
30

Multi-photon excitation of organic complexes

Wu, Po Lam 01 January 2012 (has links)
No description available.

Page generated in 0.0301 seconds