• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 96
  • 47
  • 16
  • 7
  • 6
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 1
  • Tagged with
  • 220
  • 41
  • 39
  • 36
  • 30
  • 23
  • 23
  • 19
  • 19
  • 17
  • 17
  • 15
  • 15
  • 15
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

An X-band signal source by varactor diode frequency multiplication

Murphy, Arthur William. January 1964 (has links)
Thesis (M.S.)--University of Wisconsin--Madison, 1964. / eContent provider-neutral record in process. Description based on print version record. Bibliography: 2 l. at end.
12

Coupling finite element meshes for modelling movement in electromagnetic devices

Lai, Hong Cheng January 1994 (has links)
No description available.
13

Investigation of a self-excited drift-tube klystron frequency multiplier for use in generating millimeter waves /

Cornetet, Wendell Hillis. January 1958 (has links)
No description available.
14

Quotient sets, homomorphic images and multipliers /

Thirunavukkarasu, K. January 1983 (has links)
No description available.
15

Trace-class norm multipliers

Khalil, Roshdi R. I. January 1978 (has links)
Note:
16

Optimization column compression multipliers

Bickerff, K'Andrea Catherine, 1967- 28 August 2008 (has links)
With delay proportional to the logarithm of the multiplier word length, column compression multipliers are the fastest multipliers. Unfortunately, since the design community has assumed that fast multiplication can only be realized through custom design and layout, column compression multipliers are often dismissed as too timeconsuming and complex because of their irregular structure. This research demonstrates that an automated multiplier generation and layout process makes the column compression multiplier a viable option for application specific CMOS products. Techniques for optimal multiplier designs are identified through analysis of area, delay, and power characteristics of Wallace, Dadda, and Reduced Area multipliers. / text
17

CMS HF calorimeter PMTS and [Xi]+C lifetime measurement

Akgun, Ugur. January 2003 (has links)
Thesis (Ph. D.)--University of Iowa, 2003. / Supervisor: Yasar Onel. Includes bibliographical references (leaves 154-164).
18

Optimization olumn compression multipliers

Bickerff, K'Andrea Catherine, January 1900 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 2007. / Vita. Includes bibliographical references.
19

Frequency Multiplication in Silicon Nanowires

Ghita, Marius Mugurel 07 July 2016 (has links)
Frequency multiplication is an effect that arises in electronic components that exhibit a non-linear response to electromagnetic stimuli. Barriers to achieving very high frequency response from electronic devices are the device capacitance and other parasitic effects such as resistances that arise from the device geometry and are in general a function of the size of the device. In general, smaller device geometries and features lead to a faster response to electromagnetic stimuli. It was posited that the small size of the silicon nanowires (SiNWs) would lead to small device capacitance and spreading resistance, thus making the silicon nanowires useful in generating microwave and terahertz radiation by frequency multiplication. To verify this hypothesis, silicon nanowires based devices were fabricated and investigated using two experimental setups. The setups were designed to allow the investigation of the nanowire based devices at low frequencies and at high frequencies. Both setups consisted of an RF/microwave source, filters, waveguide, and a spectrum analyzer. They also allowed the characterization of the samples with a semiconductor parameter analyzer. The first step in the investigation of the SiNW devices was to install them in the waveguides and perform Current-Voltage (I-V) sweeps using the semiconductor parameter analyzer. The devices that exhibited the non-linear I-V characteristics typical of diodes were further investigated by first exposing them to 70MHz and 500MHz frequencies in the low frequency setup and then to 50GHz microwaves in the high frequency setup. The response of the devices was captured with a spectrum analyzer. The results demonstrate that the non-linear effect of frequency multiplication is present in nanowire devices from DC to 100GHz. The HF setup provides a platform that with an appropriate detector can be used to detect harmonics of the SiNWs in sub-millimeter/THz region of the electromagnetic spectrum.
20

Photoelectric solar spectroscopy

Mallia, E. A. January 1967 (has links)
No description available.

Page generated in 0.0439 seconds