• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 1
  • 1
  • Tagged with
  • 15
  • 15
  • 7
  • 6
  • 6
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Using maximal feasible subset of constraints to accelerate a logic-based Benders decomposition scheme for a multiprocessor scheduling problem

Grgic, Alexander, Andersson, Filip January 2022 (has links)
Logic-based Benders decomposition (LBBD) is a strategy for solving discrete optimisation problems. In LBBD, the optimisation problem is divided into a master problem and a subproblem and each part is solved separately. LBBD methods that combine mixed-integer programming and constraint programming have been successfully applied to solve large-scale scheduling and resource allocation problems. Such combinations typically solve an assignment-type master problem and a scheduling-type subproblem. However, a challenge with LBBD methods that have feasibility subproblems are that they do not provide a feasible solution until an optimal solution is found.  In this thesis, we show that feasible solutions can be obtained by finding and combining feasible parts of an infeasible master problem assignment. We use these insights to develop an acceleration technique for LBBD that solves a series of subproblems, according to algorithms for constructing a maximal feasible subset of constraints (MaFS). Using a multiprocessor scheduling problem as a benchmark, we study the computational impact from using this technique. We evaluate three variants of LBBD schemes. The first uses MaFS, the second uses irreducible subset of constraints (IIS) and the third combines MaFS with IIS. Computational tests were performed on an instance set of multiprocessor scheduling problems. In total, 83 instances were tested, and their number of tasks varied between 2794 and 10,661. The results showed that when applying our acceleration technique in the decomposition scheme, the pessimistic bounds were strong, but the convergence was slow. The decomposition scheme combining our acceleration technique with the acceleration technique using IIS showed potential to accelerate the method.
12

Bounds For Scheduling In Non-Identical Uniform Multiprocessor Systems

Darera, Vivek N 06 1900 (has links)
With multiprocessors and multicore processors becoming ubiquitous, focus has shifted from research on uniprocessors to that on multiprocessors. Results derived for the uniprocessor case unfortunately do not always directly extend to the multiprocessor case in a straightforward manner. This necessitates a paradigm shift in the approach used to design and analyse the behaviour of such processors. In the case of Real-time systems, that is, systems characterised by explicit timing constraints, analysis and performance guarantees are more important, as failure is unacceptable. Scheduling algorithms used in Real-time systems have to be carefully designed as the performance of the system depends critically on them. Efficient tests for determining if a set of tasks can be feasibly scheduled on such a computing system using a particular scheduling algorithm thus assumes importance. Traditionally, the ‘task utilization’ parameter has been used for devising such tests. Utilization based tests for Earliest Deadline First(EDF) and Rate Monotonic(RM) scheduling algorithms are known and are well understood for uniprocessor systems. In our work, we derive limits on similar bounds for the multiprocessor case. Our work diners from previous literature in that we explore the case when the individual processors constituting the multiprocessor need not be identical. Each processor in such a system is characterised by a capacity, or speed, and the time taken by a task to execute on a processor is inversely proportional to its speed. Such instances may arise during system upgradation, when faster processors may be added to the system, making it a non-identical multiprocessor, or during processor design, when the different cores on the chip may have different processing power to handle dynamic workloads. We derive results for the partitioned paradigm of multiprocessor scheduling, that is, when tasks are partitioned among the processors, and interprocessor migration after a part of execution is completed is not allowed. Results are derived for both fixed priority algorithms(RM)and dynamic priority algorithms (EDF) used on individual processors. A maximum and minimum limit on the bounds for a ‘greedy’ class of algorithms are established, since the actual value of the bound depends on the algorithm that allocates the tasks. We also derive the utilization bound of an algorithm whose bound is close to the upper limit in both cases. We find that an expression for the utilization bound can be obtained when EDF is used as the uniprocessor scheduling algorithm, but when RM is the uniprocessor scheduling algorithm,an O(mn) algorithm is required to find the utilization bound, where m is the number of tasks in the system and n is the number of processors. Knowledge of such bounds allows us to carry out very fast schedulability tests, although we have the limitation that the tests are sufficient but not necessary to ensure schedulability. We also compare the value of the bounds with those achievable in ‘equivalent’ identical multiprocessor systems and find that the performance guarantees provided by the non-identical multiprocessor system are far higher than those offered by the equivalent identical system.
13

New Techniques for Building Timing-Predictable Embedded Systems

Guan, Nan January 2013 (has links)
Embedded systems are becoming ubiquitous in our daily life. Due to close interaction with physical world, embedded systems are typically subject to timing constraints. At design time, it must be ensured that the run-time behaviors of such systems satisfy the pre-specified timing constraints under any circumstance. In this thesis, we develop techniques to address the timing analysis problems brought by the increasing complexity of underlying hardware and software on different levels of abstraction in embedded systems design. On the program level, we develop quantitative analysis techniques to predict the cache hit/miss behaviors for tight WCET estimation, and study two commonly used replacement policies, MRU and FIFO, which cannot be analyzed adequately using the state-of-the-art qualitative cache analysis method. Our quantitative approach greatly improves the precision of WCET estimation and discloses interesting predictability properties of these replacement policies, which are concealed in the qualitative analysis framework. On the component level, we address the challenges raised by multi-core computing. Several fundamental problems in multiprocessor scheduling are investigated. In global scheduling, we propose an analysis method to rule out a great part of impossible system behaviors for better analysis precision, and establish conditions to guarantee the bounded responsiveness of computing tasks. In partitioned scheduling, we close a long standing open problem to generalize the famous Liu and Layland's utilization bound in uniprocessor real-time scheduling to multiprocessor systems. We also propose to use cache partitioning for multi-core systems to avoid contentions on shared caches, and solve the underlying schedulability analysis problem. On the system level, we present techniques to improve the Real-Time Calculus (RTC) analysis framework in both efficiency and precision. First, we have developed Finitary Real-Time Calculus to solve the scalability problem of the original RTC due to period explosion. The key idea is to only maintain and operate on a limited prefix of each curve that is relevant to the final results during the whole analysis procedure. We further improve the analysis precision of EDF components in RTC, by precisely bounding the response time of each computation request.
14

Distribution d'une architecture modulaire intégrée dans un contexte hélicoptère / Distribution of an integrated modular architecture in a helicopter context

Bérard-Deroche, Émilie 12 December 2017 (has links)
Les architectures modulaires intégrées (IMA) sont une évolution majeure de l'architecture des systèmes avioniques. Elles permettent à plusieurs systèmes de se partager des ressources matérielles sans interférer dans leur fonctionnement grâce à un partitionnement spatial (zones mémoires prédéfinies) et temporel (ordonnancement statique) dans les processeurs ainsi qu'une réservation des ressources sur les réseaux empruntés. Ces allocations statiques permettent de vérifier le déterminisme général des différents systèmes: chaque système doit respecter des exigences de bout-en-bout dans une architecture asynchrone. Une étude pire cas permet d'évaluer les situations amenant aux limites du système et de vérifier que les exigences de bouten- bout sont satisfaites dans tous les cas. Les architectures IMA utilisés dans les avions centralisent physiquement des modules de calcul puissants dans des baies avioniques. Dans le cadre d'une étude de cas hélicoptère, ces baies ne sont pas envisageables pour des raisons d'encombrement: des processeurs moins puissants, utilisés à plus de 80%, composent ces architectures. Pour ajouter de nouvelles fonctionnalités ainsi que de nouveaux équipements, le souhait est de distribuer la puissance de traitement sur un plus grand nombre de processeurs dans le cadre d'une architecture globale asynchrone. Deux problématiques fortes ont été mises en avant tout au long de cette thèse. La première est la répartition des fonctions avioniques associée à une contrainte d'ordonnancement hors-ligne sur les différents processeurs. La deuxième est la satisfaction des exigences de communication de bout-en-bout, dépendantes de l'allocation et l'ordonnancement des fonctions ainsi que des latences de communication sur les réseaux. La contribution majeure de cette thèse est la recherche d'un compromis entre la distribution des architectures IMA sur un plus grand nombre de processeurs et la satisfaction des exigences de communication de bout-en-bout. Nous répondons à cet enjeu de la manière suivante: - Nous formalisons dans un premier temps un modèle de partitions communicantes tenant en compte des contraintes d'allocation et d'ordonnancement des partitions d'une part et des contraintes de communication de bout-en-bout entre partitions d'autre part. - Nous présentons dans un deuxième temps une recherche exhaustive des architectures valides. Nous proposons l'allocation successive des fonctions avioniques en considérant au même niveau la problématique d'ordonnancement et la satisfaction des exigences de bout-en-bout avec des latences de communication figées. Cette méthode itérative permet de construire des allocations de partitions partiellement valides. La construction des ordonnancements dans chacun des processeurs est cependant une démarche coûteuse dans le cadre d'une recherche exhaustive. - Nous avons conçu dans un troisième temps une heuristique gloutonne pour réduire l'espace de recherche associé aux ordonnancements. Elle permet de répondre aux enjeux de distribution d'une architecture IMA dans un contexte hélicoptère. - Nous nous intéressons dans un quatrième temps à l'impact des latences de communication de bout-en-bout sur des architectures distribuées données. Nous proposons pour celles-ci les choix de réseaux basés sur les latences de communication admissibles entre les différentes fonctions avioniques. Les méthodes que nous proposons répondent au besoin industriel de l'étude de cas hélicoptère, ainsi qu'à celui de systèmes de plus grande taille. / Integrated Modular Architectures (IMA) is a major evolution of avionics systems. A spatial (predefined memory zones) and temporal (off-line scheduling) partitioning as well as communication resources reservation permit several systems not to interfere in this architecture. The determinism of systems is proved thanks to these static allocations: each system must respect end-to-end requirements in an asynchronous architecture. A worst-case study permits to assess the bounds of systems in order to verify that end-to-end requirements are satisfied in all the cases. IMA architectures physically centralize powerful computing resources in avionics bays in aircraft. These aren't feasible in helicopters due to size reasons: powerless processors, at least 80% used, set these architectures. In order to add new functionalities and equipment, the aim is to distribute processing power over a larger number of processors in the context of a globally asynchronous architecture. Two strong issues have been advanced throughout this thesis. The first one is the distribution of avionics functions with an off-line scheduling constraint on the different processors. The second one is the satisfaction of end-to-end requirements, depending on allocation and scheduling of functions as well as communication latencies over the networks. This thesis proposes a trade-off between the distribution of IMA architectures on a larger number of processors and the satisfaction of end-to-end communication requirements. We answer at this topic as follows: - First, we formalize a communicating partitions model based on the partitions allocation and scheduling constraints on the one hand and end-to-end communication constraints on the other hand. - Second, we present an exhaustive search of valid architectures. We introduce a successive allocation of avionics functions considering altogether the scheduling and the satisfaction of end-to-end constraints with fixed communication latencies. This iterative method allows the building of partially valid allocations schemes, but the scheduling search is expensive here. - Third, we create a greedy heuristic to reduce the scheduling search space. It permits to meet the challenges of the distribution of IMA architecture in a helicopter context. - Finally, we focus on the impact of end-to-end communication latencies on given distributed architectures. We define for them the networks based on eligible communication latencies between the different avionics functions. Our methods answer the industrial case study needs as well as bigger size systems needs.
15

Energy-aware real-time scheduling in embedded multiprocessor systems / Ordonnancement temps réel dans les systèmes embarqués multiprocesseurs contraints par l'énergie

Nélis, Vincent 18 October 2010 (has links)
Nowadays, computer systems are everywhere. From simple portable devices such as watches and MP3 players to large stationary installations that control nuclear power plants, computer systems are now present in all aspects of our modern and every-day life. In about only 70 years, they have completely perturbed our way of life and they reached a so high degree of sophistication that they will be soon capable of driving our cars and cleaning our houses without any human intervention. As computer systems gain in responsibilities, it becomes essential that they provide both safety and reliability. Indeed, a failure in systems such as the anti-lock braking system (ABS) in cars could threaten human lives and generate catastrophic and irreversible consequences. Hence, for many years, researchers have addressed these emerging problems of system safety and reliability which come along with this fulgurant evolution. <p><p>This thesis provides a general overview of embedded real-time computer systems, i.e. a particular kind of computer system whose number grows daily. We provide the reader with some preliminary knowledge and a good understanding of the concepts that underlie this emerging technology. We focus especially on the theoretical problems related to the real-time issue and briefly summarizes the main solutions, together with their advantages and drawbacks. This brings the reader through all the conceptual layers constituting a computer system, from the software level---the logical part---that specifies both the system behavior and requirements to the hardware level---the physical part---that actually performs the expected treatments and reacts to the environment. In the meanwhile, we introduce the theoretical models that allow researchers for theoretical analyses which ensure that all the system requirements are fulfilled. Finally, we address the energy consumption problem in embedded systems. We describe the various factors of power dissipation in modern technologies and we introduce different solutions to reduce this consumption./Cette thèse se focalise sur un type de systèmes informatiques bien précis appelés “systèmes embarqués temps réel”. Un système est dit “embarqué” lorsqu’il est développé afin de servir un but bien précis. Un téléphone portable est un parfait exemple de système embarqué étant donné que toutes ses fonctionnalités sont rigoureusement définies avant même sa conception. Au contraire, un ordinateur personnel n’est généralement pas considéré comme un système embarqué, les concepteurs ne sachant pas à l’avance à quelles fins il sera utilisé. Une grande partie de ces systèmes embarqués ont des contraintes temporelles très fortes, ce qui les distingue encore plus des ordinateurs grand public. A titre d’exemple, lorsqu’un conducteur de voiture freine brusquement, l’ordinateur de bord déclenche l’application ABS et il est primordial que cette application soit traitée endéans une courte échéance. Autrement dit, cette fonctionnalité ABS doit être traitée prioritairement par rapport aux autres fonctionnalités du véhicule. Ce type de système embarqué est alors dit “temps réel”, dû à ces notions de temps et de priorités entre les applications. La problèmatique posée par les systèmes temps réel est la suivante. Comment déterminer, à tout moment, un ordre d’exécution des différentes fonctionnalités de telle sorte qu’elles soient toutes exécutées entièrement endéans leur échéance ?De plus, avec l’apparition récente des systèmes multiprocesseurs, cette problématique s’est fortement complexifiée, vu que le système doit à présent déterminer quelle fonctionnalité s’exécute à quel moment sur quel processeur afin que toutes les contraintes temporelles soient respectées. Pour finir, ces systèmes embarqués temp réel multiprocesseurs se sont rapidement retrouvés confrontés à un problème de consommation d’énergie. Leur demande en terme de performance (et donc en terme d’énergie) à évolué beaucoup plus rapidement que la capacité des batteries qui les alimentent. Ce problème est actuellement rencontré par de nombreux systèmes, tels que les téléphones portables par exemple. L’objectif de cette thèse est de parcourir les différents composants de tels système embarqués et de proposer des solutions afin de réduire leur consommation d’énergie. / Doctorat en Sciences / info:eu-repo/semantics/nonPublished

Page generated in 0.0924 seconds