• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 45
  • 11
  • 11
  • 8
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 99
  • 99
  • 82
  • 45
  • 15
  • 15
  • 14
  • 14
  • 12
  • 10
  • 10
  • 9
  • 9
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Molecular mechanisms of notch signaling governing vascular smooth muscle cell proliferation /

Havrda, Matthew C., January 2006 (has links) (PDF)
Thesis (Ph.D.) in Biochemistry and Molecular Biology--University of Maine, 2006. / Includes vita. Advisory Committee: Lucy Liaw, Scientist, Maine Medical Center Research Institute, Advisor; Carla Mouta-Bellum, Scientist, Maine Medical Center Research Institute; Jeong Yoon, Scientist, Maine Medical Center Research Institute; Dorothy E. Croall, Professor of Biochemistry; Thomas Gridley, Senior Scientist, The Jackson Laboratory. Includes bibliographical references (leaves 97-112 ).
2

Roles of activation transcription factor 4 (ATF4) and YrdC in the response of vascular smooth muscle cells to injury

Malabanan, Kristine Paz, Centre for Vascular Research, Faculty of Medicine, UNSW January 2008 (has links)
Neointimal proliferation is a key process underlying many cardiovascular diseases such as atherosclerosis and angioplasty-induced restenosis. Vascular smooth muscle cells (SMC) are significant contributors to the development and stability of the neointimal lesion. This is due, in part, to their capacity to be phenotypically modulated, facilitating SMC proliferation in response to mechanical injury, their subsequent migration, and deposition of extracellular matrix. The aim of this thesis was to characterize the function of two genes identified in our laboratory to be upregulated shortly after mechanical injury of vascular SMC and their exposure to fibroblast growth factor (FGF)-2, an injury-induced cytokine. The first is activation transcription factor (ATF) 4, which is upregulated by FGF-2 and mechanical injury in vascular SMC in vitro, and by balloon-injury in the artery wall. The induction of ATF4 by FGF-2 was shown to be mediated through the PI3K pathway, and preceded by phoshorylation of eIF2alpha, a known upstream effector of ATF4 activation. Knock-down of ATF4 expression inhibited balloon-injury induced neointimal hyperplasia, suggesting that ATF4 is a key player in the SMC response to injury. Furthermore, microarray analysis identified several genes whose transcription in response to FGF-2 may be regulated by ATF4. In particular, this work demonstrates that ATF4 is necessary for VEGF-A upregulation in SMC in response to FGF-2 and mechanical injury in vitro and in the artery wall following balloon-injury. The second is a translation factor, YrdC203. Using confocal fluorescence microscopy, YrdC203 was found to localize partially to the ER, and with RPL12, a component of the 60S ribosomal subunit. Immunoprecipitation studies demonstrate that YrdC203 also interacts with an initiation factor, eIF5B. Mutation of an initiation factor’s signature on the exterior of YrdC203 perturbed its interaction with RPL12 and eIF5B, and inhibited the increase in protein synthesis observed with overexpression of YrdC203. This implicates YrdC203 as a translation factor responsible for ensuring protein synthesis in vascular SMC in response to injury. The present work provides evidence for new molecular mechanisms, transcriptional and translational, regulating the response of vascular SMC to injury. This would provide leads for future therapeutic targets.
3

Oxygen Regulation of Vascular Smooth Muscle Cell Proliferation and Survival

Basu Ray, Julie 03 March 2010 (has links)
Arterial smooth muscle cells (SMCs) from the systemic and pulmonary circulations experience a broad range of oxygen concentrations under physiological conditions. The hypoxic response, however, has been inconsistent, with both enhanced proliferation and growth arrest being reported. This variability precludes a definitive conclusion regarding the role of oxygen tension in arterial disease. In the first part of this study, we determined if hypoxia elicits different proliferative and apoptotic responses in human aortic SMCs (HASMCs) incubated under conditions which do or do not result in cellular ATP depletion and whether these effects are relevant to vascular remodeling in vivo. Gene expression profiling was used to identify potential regulatory pathways. In HASMCs incubated at 3% O2, proliferation and progression through G1/S interphase are enhanced. Incubation at 1% O2 reduced proliferation, delayed G1/S transition, increased apoptosis and cellular ATP levels were reduced. In aorta and mesenteric artery from hypoxia exposed rats, both proliferation and apoptosis are increased after 48hrs. p53 and p21expression is differentially affected in HASMCs incubated at 1% and 3% O2. Hypoxia induces a state of enhanced cell turnover, conferring the ability to remodel the vasculature in response to changing tissue metabolic needs while avoiding the accumulation of mutations that may lead to malignant transformation or abnormal vascular structure formation. A unifying hypothesis in which events at the G1/S transition and apoptosis activation are coordinated by effects on p53, p21, their downstream effector genes and regulatory factors is proposed. Differences in the contractile responses of systemic and pulmonary arterial smooth muscle cells to hypoxia are well studied. Differences in proliferation and survival are anticipated because of differences in embryonal cell origin, oxygen concentrations within their respective microenvironments and in cellular energetics but these responses have not been directly compared. In the second part of the study, human pulmonary arterial SMCs (HPASMCs) proliferated at oxygen concentrations which inhibited cell growth in HASMCs. HPASMCs survived and maintained their intracellular ATP levels at levels of hypoxia sufficient to deplete ATP and induce apoptosis in HASMCs. In vivo studies in rats show proliferation and apoptosis in main or branch PASMCs only after 7 days of hypoxia. VSMCs are able to proliferate under hypoxic conditions as long as cellular ATP levels are maintained. HPASMCs have an enhanced capacity to maintain cellular energy status compared to HASMCs and hence their viability is preserved and the proliferative response predominates at lower oxygen concentrations.
4

Oxygen Regulation of Vascular Smooth Muscle Cell Proliferation and Survival

Basu Ray, Julie 03 March 2010 (has links)
Arterial smooth muscle cells (SMCs) from the systemic and pulmonary circulations experience a broad range of oxygen concentrations under physiological conditions. The hypoxic response, however, has been inconsistent, with both enhanced proliferation and growth arrest being reported. This variability precludes a definitive conclusion regarding the role of oxygen tension in arterial disease. In the first part of this study, we determined if hypoxia elicits different proliferative and apoptotic responses in human aortic SMCs (HASMCs) incubated under conditions which do or do not result in cellular ATP depletion and whether these effects are relevant to vascular remodeling in vivo. Gene expression profiling was used to identify potential regulatory pathways. In HASMCs incubated at 3% O2, proliferation and progression through G1/S interphase are enhanced. Incubation at 1% O2 reduced proliferation, delayed G1/S transition, increased apoptosis and cellular ATP levels were reduced. In aorta and mesenteric artery from hypoxia exposed rats, both proliferation and apoptosis are increased after 48hrs. p53 and p21expression is differentially affected in HASMCs incubated at 1% and 3% O2. Hypoxia induces a state of enhanced cell turnover, conferring the ability to remodel the vasculature in response to changing tissue metabolic needs while avoiding the accumulation of mutations that may lead to malignant transformation or abnormal vascular structure formation. A unifying hypothesis in which events at the G1/S transition and apoptosis activation are coordinated by effects on p53, p21, their downstream effector genes and regulatory factors is proposed. Differences in the contractile responses of systemic and pulmonary arterial smooth muscle cells to hypoxia are well studied. Differences in proliferation and survival are anticipated because of differences in embryonal cell origin, oxygen concentrations within their respective microenvironments and in cellular energetics but these responses have not been directly compared. In the second part of the study, human pulmonary arterial SMCs (HPASMCs) proliferated at oxygen concentrations which inhibited cell growth in HASMCs. HPASMCs survived and maintained their intracellular ATP levels at levels of hypoxia sufficient to deplete ATP and induce apoptosis in HASMCs. In vivo studies in rats show proliferation and apoptosis in main or branch PASMCs only after 7 days of hypoxia. VSMCs are able to proliferate under hypoxic conditions as long as cellular ATP levels are maintained. HPASMCs have an enhanced capacity to maintain cellular energy status compared to HASMCs and hence their viability is preserved and the proliferative response predominates at lower oxygen concentrations.
5

In vitro and in vivo studies of the response of the porcine coronary artery to balloon injury and the effect of ras farnesyltransferase inhibition

Work, Lorraine Margaret January 1999 (has links)
No description available.
6

Roles of activation transcription factor 4 (ATF4) and YrdC in the response of vascular smooth muscle cells to injury

Malabanan, Kristine Paz, Centre for Vascular Research, Faculty of Medicine, UNSW January 2008 (has links)
Neointimal proliferation is a key process underlying many cardiovascular diseases such as atherosclerosis and angioplasty-induced restenosis. Vascular smooth muscle cells (SMC) are significant contributors to the development and stability of the neointimal lesion. This is due, in part, to their capacity to be phenotypically modulated, facilitating SMC proliferation in response to mechanical injury, their subsequent migration, and deposition of extracellular matrix. The aim of this thesis was to characterize the function of two genes identified in our laboratory to be upregulated shortly after mechanical injury of vascular SMC and their exposure to fibroblast growth factor (FGF)-2, an injury-induced cytokine. The first is activation transcription factor (ATF) 4, which is upregulated by FGF-2 and mechanical injury in vascular SMC in vitro, and by balloon-injury in the artery wall. The induction of ATF4 by FGF-2 was shown to be mediated through the PI3K pathway, and preceded by phoshorylation of eIF2alpha, a known upstream effector of ATF4 activation. Knock-down of ATF4 expression inhibited balloon-injury induced neointimal hyperplasia, suggesting that ATF4 is a key player in the SMC response to injury. Furthermore, microarray analysis identified several genes whose transcription in response to FGF-2 may be regulated by ATF4. In particular, this work demonstrates that ATF4 is necessary for VEGF-A upregulation in SMC in response to FGF-2 and mechanical injury in vitro and in the artery wall following balloon-injury. The second is a translation factor, YrdC203. Using confocal fluorescence microscopy, YrdC203 was found to localize partially to the ER, and with RPL12, a component of the 60S ribosomal subunit. Immunoprecipitation studies demonstrate that YrdC203 also interacts with an initiation factor, eIF5B. Mutation of an initiation factor’s signature on the exterior of YrdC203 perturbed its interaction with RPL12 and eIF5B, and inhibited the increase in protein synthesis observed with overexpression of YrdC203. This implicates YrdC203 as a translation factor responsible for ensuring protein synthesis in vascular SMC in response to injury. The present work provides evidence for new molecular mechanisms, transcriptional and translational, regulating the response of vascular SMC to injury. This would provide leads for future therapeutic targets.
7

A Network Model of Small Intestinal Electrical Activities

Carbajal, Victor 03 1900 (has links)
<p> An electronic circuit based on a modified version of the four branch Hodgkin-Huxley electrical equivalent circuit (Roy, 1972) has been proposed and implemented to simulate the pattern of the electrical activities present in the muscle cells of the mammalian small intestine. </p> <p> The analog's implementation comprises two main circuits to simulate these activities. One of them is concerned with generating sub threshold oscillations, while the other is basically a spike-generator circuit. Additional circuitry is included to interface them. Furthermore, the analog provides a parameter set by means of which its performance may be varied. Such settings may alter the intrinsic frequency, the magnitude of the depolarizing phase of the control potential for the response activity to occur, and also the frequency of the electrical response activity. </p> <p> Four such electronic oscillators, having different intrinsic frequencies, were coupled together in a chain structure with passive elements to simulate "frequency pulling" and "entrainment" . The model qualitatively reproduced the observed pattern of electrical activities in the small intestine. </p> / Thesis / Master of Engineering (MEngr)
8

Investigating the role of histone H3 lysine 9 dimethylation in regulating disease-associated vascular smooth muscle cell gene expression

Harman, Jennifer January 2019 (has links)
Widespread changes in gene expression accompany vascular smooth muscle cell (VSMC) phenotypic switching, a hallmark of vascular disease. Upon insult, VSMCs downregulate contractile proteins and upregulate genes linked to vascular remodelling, such as matrix metalloproteinases (MMPs) and pro-inflammatory cytokines. However, the epigenetic mechanisms which regulate VSMC phenotypic switching remain unclear. This thesis explores the role of histone 3 lysine 9 dimethylation (H3K9me2), a repressive epigenetic mark, in regulating the expression of disease-associated VSMC genes. Intriguingly, murine models of VSMC phenotypic switching revealed reduced levels of H3K9me2 upon loss of the contractile state while chromatin immunoprecipitation (ChIP) identified a subset of IL-1α/injury-responsive VSMC gene promoters enriched for H3K9me2. To test the functional importance of H3K9me2 for VSMC gene regulation the methyltransferase G9A/GLP was pharmacologically inhibited in vitro and in vivo. The resulting loss of H3K9me2 attenuated the expression of contractile VSMC markers and significantly potentiated IL-1α/injury-induced expression of MMP and pro-inflammatory genes. H3K9me2-mediated regulation of contractile and IL-1α-responsive VSMC gene expression was confirmed in cultured human VSMCs (hVSMCs). This prompted the use of hVSMCs to investigate the mechanism underlying H3K9me2-dependent regulation of IL-1α-mediated VSMC genes. Interestingly, G9A/GLP inhibition did not influence the level of IL-1α-induced nuclear localisation of the NFkB transcription factor p65 but significantly increased IL-1α-induced p65 binding to the IL6 promoter, correlating with reduced H3K9me2 levels. In contrast, enrichment of p65 was not observed at reported NFkB sites within the MMP3 promoter after IL-1α stimulation. Rather, IL-1α-induced MMP3 expression was dependent on JNK activity and G9A/GLP inhibition potentiated IL-1α-induced binding of the AP-1 transcription factor cJUN to the MMP3 promoter. Collectively, these findings suggest that H3K9me2 plays a role in maintaining the contractile VSMC state and prevents binding of both NFkB and AP-1 transcription factors at specific IL-1α-regulated genes to possibly block spurious induction of a pro-inflammatory state.
9

Serum amyloid A and toll-like receptor 2 regulate vascular smooth muscle cell cholesterol trafficking and differentiation

Pessolano, Lawrence 17 February 2016 (has links)
Vascular smooth muscle cells (SMCs) regulate vessel contraction but during diseases including atherosclerosis, SMCs undergo functional changes that contribute to pathology. Chronic inflammation in the vasculature exacerbates disease progression. Acute phase serum amyloid A (SAA) is up-regulated during inflammation and expressed in atherosclerotic lesions. Previous work in our laboratory demonstrated that SAA activates secretory phospholipase A2 group IIA (sPLA2), whose products impact cellular cholesterol homeostasis. It was hypothesized that SAA promotes cholesterol trafficking from the plasma membrane to the endoplasmic reticulum (ER) in an sPLA2-dependent manner. SAA induced SMC cholesterol accumulation in the ER. Levels of plasma membrane cholesterol decreased, confirming that cholesterol moved from the plasma membrane to the ER. Another family member, (cytosolic phospholipase A2, group IV), was also required for SAA-induced sPLA2 activation and cholesterol mobilization. SAA activated neutral sphingomyelinase and blocking this activity inhibited cholesterol trafficking. These studies show that SAA activated sPLA2 which activated neutral sphingomyelinase. As a result, sphingomyelin was cleaved, which liberated cholesterol for movement to the ER. Additional studies demonstrated that SAA repressed expression of SMC contractile markers including Acta2 and Myh11. Toll-like receptor 2 (TLR2) is an SAA receptor implicated in atherogenesis and it was hypothesized that TLR2 plays a role in SAA-mediated phenotype/gene changes. The TLR2 ligands, FSL and Pam3CSK4, down-regulated SMC contractile marker expression. Knockdown of TLR2 demonstrated that SAA-mediated phenotype modulation was TLR2-dependent. SAA, FSL, and Pam3CSK4 also induced mRNA expression of pro-inflammatory and adhesion genes, changes inhibited by TLR2 knockdown. SAA repressed activity of the αSMA promoter, demonstrating transcriptional regulation. Myocardin, a transcription factor required to drive expression of SMC contractile genes, was down-regulated by SAA and FSL. Myocardin overexpression abrogated SAA- and FSL-mediated repression of the αSMA and SM22α promoters. These studies demonstrate that SAA promoted a phenotypic switch through activation of TLR2 and down-regulation of myocardin expression. Taken together, novel SAA- and TLR2-mediated mechanisms of cholesterol trafficking and phenotypic modulation in SMCs are shown. Importantly, this work uncovers previously unknown effects of TLR2 signaling on vascular SMCs and provides a context by which TLR2 activation and lesion-associated SAA may promote atherosclerosis. / 2017-12-01T00:00:00Z
10

A study of the transfer of recombinant dystrophin genes into skeletal muscle cells

Piper, Tony Andrew January 1998 (has links)
No description available.

Page generated in 0.0686 seconds