• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Designing a User-Centered Music Experience for the Smartwatch / Användarcentrerad design av en musikupplevelse för smartklockor

Linger, Oscar January 2018 (has links)
With a rapid growth in smartwatch and smartwatch audio technologies, there is a lack of knowledge regarding user needs for smartwatch audio experiences and how those needs can be satisfied through user-centered design. Previous smartwatch user behavior studies suggest that audio app usage is not a primary use case for the smartwatch. However, audio applications are increasingly incorporated into smartwatches, which leads to the question of the apps’ purpose, validity, overlooked contexts and use cases. This thesis aims to understand what kind of audio experience(s) a user-centered design process might generate for the smartwatch. The design process generated insights from smartwatch users of audio applications, that were used as design guidelines for Context Awareness, Micro-interactions, and Device Ecosystem. The resulting prototype HeartBeats considers Context Awareness with heart rate music recommendations, Micro-interactions with one-handed song skipping and Quickplay music, and Device Ecosystem with speaker access and phone battery support. / Med en snabb teknisk utveckling av smartklockor och tillhörande ljudteknik finns det en kunskapsbrist om användarbehov och hur dessa kan tillfredsställas genom användarcentrerad design. Tidigare forskning om smartklocksanvändares beteenden tyder på att ljudapplikationer inte är ett huvudsakligt användningsområde för smartklockor. Ljudapplikationer implementeras dock allt mer i smartklockor, vilket leder till frågan om vilket värde de ger och om användningsområden möjligen har förbisetts. Den här uppsatsen syftar till att förstå vilka sorts ljudupplevelser en användarcentrerad designprocess skulle resultera i för smartklockor. Designprocessen resulterade i insikter om smartklocksanvändares beteenden med ljudapplikationer, vilket användes som designriktlinjer för kontextmedvetenhet, mikrointeraktioner och ekosystem av enheter. Den resulterande prototypen HeartBeats nyttjar kontextmedvetenhetgenom att rekommendera musik med användarens hjärtrytm i åtanke, mikrointeraktioner med en gest för att byta låt och snabbstart av musik, samt ekosystem av enheter genom snabb åtkomst till klockhögtalare och stöd för att spara telefonbatteri.
2

Unboxing The Algorithm : Understandability And Algorithmic Experience In Intelligent Music Recommendation Systems

Schröder, Anna Marie January 2021 (has links)
After decades of black-boxing the existence of algorithms in technologies of daily need, users lack confidence in handling them. This thesis study investigates the use situation of intelligent music recommendation systems and explores how understandability as a principle drawn from sociology, design, and computing can enhance the algorithmic experience. In a Research-Through-Design approach, the project conducted focus user sessions and an expert interview to explore first-hand insights. The analysis showed that users had limited mental models so far but brought curiosity to learn. Explorative prototyping revealed that explanations could improve the algorithmic experience in music recommendation systems. Users could comprehend information the best when it was easy to access and digest, directly related to user behavior, and gave control to correct the algorithm. Concluding, trusting users with more transparent handling of algorithmic workings might make authentic recommendations from intelligent systems applicable in the long run.

Page generated in 0.1263 seconds