Spelling suggestions: "subject:"musique symbolic""
1 |
Tatouage des bases de donnéesGross-Amblard, David 06 December 2010 (has links) (PDF)
Les techniques de tatouage de bases de données permettent la dissimulation d'information pertinente dans les n-uplets, comme par exemple l'identité du propriétaire des données. Les techniques de tatouage sont nombreuses dans le domaine multimédia, mais le tatouage des bases de données présente de nombreuses spécificités. Certaines d'entre elles sont traitées dans ce document : comment tatouer une base de données numérique tout en préservant le résultat de requêtes d'agrégat importantes, comment tatouer un flux structuré, comme un flux XML typé ou une partition musicale symbolique, comment tatouer une base de données géographiques.
|
2 |
Modèles génératifs profonds pour la génération interactive de musique symbolique / Interactive deep generative models for symbolic musicHadjeres, Gaëtan 07 June 2018 (has links)
Ce mémoire traite des modèles génératifs profonds appliqués à la génération automatique de musique symbolique. Nous nous attacherons tout particulièrement à concevoir des modèles génératifs interactifs, c'est-à-dire des modèles instaurant un dialogue entre un compositeur humain et la machine au cours du processus créatif. En effet, les récentes avancées en intelligence artificielle permettent maintenant de concevoir de puissants modèles génératifs capables de générer du contenu musical sans intervention humaine. Il me semble cependant que cette approche est stérile pour la production artistique dans le sens où l'intervention et l'appréciation humaines en sont des piliers essentiels. En revanche, la conception d'assistants puissants, flexibles et expressifs destinés aux créateurs de contenus musicaux me semble pleine de sens. Que ce soit dans un but pédagogique ou afin de stimuler la créativité artistique, le développement et le potentiel de ces nouveaux outils de composition assistée par ordinateur sont prometteurs. Dans ce manuscrit, je propose plusieurs nouvelles architectures remettant l'humain au centre de la création musicale. Les modèles proposés ont en commun la nécessité de permettre à un opérateur de contrôler les contenus générés. Afin de rendre cette interaction aisée, des interfaces utilisateurs ont été développées ; les possibilités de contrôle se manifestent sous des aspects variés et laissent entrevoir de nouveaux paradigmes compositionnels. Afin d'ancrer ces avancées dans une pratique musicale réelle, je conclue cette thèse sur la présentation de quelques réalisations concrètes (partitions, concerts) résultant de l'utilisation de ces nouveaux outils. / This thesis discusses the use of deep generative models for symbolic music generation. We will be focused on devising interactive generative models which are able to create new creative processes through a fruitful dialogue between a human composer and a computer. Recent advances in artificial intelligence led to the development of powerful generative models able to generate musical content without the need of human intervention. I believe that this practice cannot be thriving in the future since the human experience and human appreciation are at the crux of the artistic production. However, the need of both flexible and expressive tools which could enhance content creators' creativity is patent; the development and the potential of such novel A.I.-augmented computer music tools are promising. In this manuscript, I propose novel architectures that are able to put artists back in the loop. The proposed models share the common characteristic that they are devised so that a user can control the generated musical contents in a creative way. In order to create a user-friendly interaction with these interactive deep generative models, user interfaces were developed. I believe that new compositional paradigms will emerge from the possibilities offered by these enhanced controls. This thesis ends on the presentation of genuine musical projects like concerts featuring these new creative tools.
|
Page generated in 0.0773 seconds