• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Mussel-Inspired Adhesive and Injectable Poly(oligo(ethylene glycol) methacrylate)-based Hydrogels that Promote Dermal Wound Healing and Tissue Regeneration

Randhawa, Gurpreet K January 2023 (has links)
Traditional methods for dermal wound closure such as sutures and staples are invasive and can result in soft tissue trauma, increasing the likelihood of localized inflammation and infections. Alternately, while tissue adhesive alternatives can effectively seal and adhere to the wounds, they can also present safety concerns relating to immunogenic responses and tissue toxicity. Herein, we fabricate injectable, adhesive, and cytocompatible poly(oligo(ethylene glycol) methyl ether methacrylate) (POEGMA)-dopamine (DA) hydrogels co-crosslinked via hydrazone and self-polymerized dopamine crosslinks that exhibit high water retention, improved tissue adhesiveness, and effective tissue regeneration properties. POEGMA-DA hydrogels exhibit independently tunable gelation properties based on their dual crosslinking mechanism, allowing for gelation as fast as 24 s (allowing for injection and rapid filling of irregularly-shaped wounds) while achieving relevant compressive moduli of up to 37 kPa and in vitro skin adhesion strengths of up to 1.2 kPa. The POEGMA-DA hydrogels induced no significant inflammation while demonstrating high interfacial adhesiveness in a stented skin excisional mouse model, enabling efficient dermal tissue regeneration by supporting collagen remodelling and enabling the regeneration of hair follicles, sebaceous glands, and blood vessels at the excision site over the 14-day study timeline. As such, injectable POEGMA-DA hydrogels represent a relevant non-toxic and adhesive alternative wound closure system for treating deep dermal wounds. / Thesis / Master of Applied Science (MASc) / Effective wound healing and subsequent tissue regeneration after a physical injury requires a moist sterile environment, the presence of oxygen, nutrients and enzymes, an efficient blood supply to the wound site, and a controlled inflammatory response to initiate the healing process. External methods of closing the wound to prevent infection aid in faster healing like sutures, staples, and liquid sealants which can result in infections and/or the stimulation of an inflammatory response that can hinder tissue restoration. Hydrogels, water-swellable polymer networks, represent an alternative solution that can both suppress infection while simultaneously promoting wound healing. Hydrogels have a similar structure to soft tissues like skin and can thus provide a supportive environment for cells to promote tissue regeneration and restore tissue structure and function. The swelling of hydrogels in water is highly beneficial for providing moisture at the wound site; however, this high degree of water retention also means they have a hard time sticking to tissues. To address this challenge, hydrogels can be modified with a component naturally derived from marine mussels that allows them to stick to their wet habitats, helping hydrogels to stick to the wound site while healing. In this thesis, mussel-inspired hydrogels are designed and can spontaneously gel and stick to a wound site to accelerate the restoration of the structure and function of skin. These biodegradable and injectable hydrogels are effective in accelerating wound closure with minimal evidence of scarring while suppressing negative inflammatory reactions and restoring the structure of skin by promoting the regeneration of hair follicles, sebaceous glands and blood vessels.
2

Biological Applications of Elastin- and Mussel-Inspired Polymers

Sydney E. Hollingshead (5929754) 03 January 2019 (has links)
<div>Wounds are created in soft and hard tissue through surgery or disease. As the wound heals, the tissue is held in place using sutures or staples for soft tissue or plates, pins, or screws for hard tissues. These fixation methods inherently damage the surrounding healthy tissue. Surgical adhesives are a non-damaging alternative to these methods. In order to be effective, surgical adhesives must be biocompatible,</div><div>adhere strongly in a moist environment, and have mechanical properties similar to those of the native tissue.</div><div><br></div><div><div>To address the design criteria for surgical adhesives, we look to nature to find inspiration from compounds that provide these properties. Mussels use catechol-based</div><div>molecules to adhere to surfaces in wet and turbulent environments. Incorporating catechols into polymer systems can provide adhesion even in moist biological environments.</div><div>Mimics of elastomeric proteins from soft tissue can be used as backbones for soft and flexible adhesive systems. In particular, elastin-inspired proteins have a well-defined modular sequence that allows for a range of design choices. In this work, we explored the behavior of elastin- and mussel-inspired natural and synthetic polymers in biologically relevant environments.</div></div><div><br></div><div><div>First, the cytocompatibility of a catechol-containing poly(lactic acid) (cPLA) hard tissue adhesive was studied. The cPLA polymer was reacted with iron- or periodatebased</div><div>crosslinkers and compared to PLA. Fibroblasts grown directly on cPLA or cultured with leachate from cPLA had high viability but slower growth than cells on PLA. The periodate crosslinker was significantly cytotoxic, and cells grown on cPLA crosslinked with periodate had reduced metabolism and slowed growth. Cells grown on or in leachate from iron-crosslinked cPLA had similar viability, metabolism, and growth to cells on or in leachate from cPLA. The iron-crosslinked cPLA is a promising</div><div>cytocompatible adhesive for hard tissue applications.</div></div><div><br></div><div><div>Second, two elastin-like proteins (ELP) were developed that had pH-sensitive properties in solution and when crosslinked into hydrogels. Both ELPs had a large number of ionizable tyrosine and lysine residues, and one design also had a large number of ionizable histidine and aspartic acid residues. The stiffness of the hydrogels was maximized at pH values near the isoelectric point of the protein. The stoichometric ratio of crosslinker used affected hydrogel stiffness but did not significantly alter the pH-sensitivity of the gel. The crosslinked gel shrank when swelled at physiological pH. The pH-sensitive mechanical properties of hydrogels made from the two ELPs did not vary significantly. The tyrosine and lysine residues in one ELP were also</div><div>chemically blocked through acetylation to lower the isolectric point of the protein. The acetylated hydrogels had maximum stiffness at a pH near the isoelectric point of the acetylated ELP. The stiffness of both the native and acetylated gels were within the range of soft tissue. Through a combination of crosslinker ratio and chemical modification, the pH-responsive properties of the elastin-inspired hydrogels could be tuned.</div></div><div><br></div><div><div>Finally, adhesive proteins were created that were inspired by both elastin and mussels. An ELP was modified to include catechol groups (mELP). The ELP and mELP were optimized for adhesive use in a soft tissue system. A warm and humid environment was used to study the adhesion of these proteins on pig skin. Iron and (hydroxymethyl) phosphine crosslinkers increased the adhesive strength of both proteins, and periodate increased the adhesive strength of mELP. The adhesive strengths of the proteins were maximized when mELP was mixed with iron or when either protein were mixed with (hydroxymethyl)phosphine crosslinkers. These maximized adhesives were 12-17 times stronger than a commercially available sealant. In addition,</div><div>the iron and mELP adhesive formulation achieved high adhesive strengths even when cured for only ten minutes. This adhesive formula shows promise for adhesive</div><div>applications on soft tissue.</div></div>
3

Muschelinspirierte Polymerisation / Über die vollsynthetische Variante der enzymaktivierten Herstellung universeller Haftstoffe

Krüger, Jana Maria 22 July 2022 (has links)
Verschiedene marine Lebewesen, wie zum Beispiel Muscheln, zeigen beeindruckende Unterwasserklebefähigkeiten. Vor allem L-3,4-Dihydroxyphenylalanin (Dopa), ein sehr häufig vorkommendes Aminosäurederivat in den Proteinen des Muschelklebesystems, wirkt sich positiv auf die Adhäsions- und Kohäsionsfähigkeit der Muschel aus. Im Rahmen dieser Arbeit dient die Bildung von Cysteinyldopa, welches als biogene Verknüpfung in Proteinen vorkommt, als Inspiration für die Entwicklung eines chemischen Ansatzes zur Synthese muschelmimetischer Klebstoffe. In einem AA+BB-Polyadditionsansatz (muschelinspirierte Polymerisation, MIPoly) werden Dichinone und Dithiole als Monomere eingesetzt. Hierfür werden die Dichinone ausgehend von der chemisch vielfältigen Familie der Bisphenol-Monomere durch Oxidation mit 2-Iodoxybenzoesäure synthetisiert. Die Dichinone und die Dithiole reagieren bei Raumtemperatur in einer Michael-artigen Polyaddition, wodurch Polymeren erhalten werden, die adhäsive Thiol-Catechol-Verknüpfungen (thiol-catechol-connectivities, TCCs) in ihrem Rückgrat aufweisen. Die detaillierte Untersuchung des MIPoly-Prozesses, der gebildeten TCC-Polymere sowie niedermolekularer Modellreaktionen ermöglicht den Nachweis der TCC-Bildung und bestätigte den Michael-artigen-Polyadditionsmechanismus. Dieses chemische MIPoly ist eine robuste Reaktion, die eine einfache Skalierbarkeit verspricht und einen modularen Ansatz für maßgeschneiderte Klebstoffe bietet. Der generische Charakter der untersuchten MIPoly wird durch die Synthese einer TCC-Polymermatrix nachgewiesen. In Klebetests zeigen die synthetisierten TCC-Polymere Hafteigenschaften auf Aluminium und Polypropylen. Darüber hinaus können ausgewählte TCC-Polymere als Unterwasserklebstoffe unter Meerwassermodellbedingungen verwendet werden. / Different marine organisms, such as mussels, provide impressive under water gluing capabilities. Mainly L-3,4-dihydroxyphenylalanin (Dopa), which is a highly abundant amino acid derivative in the proteins of the mussel gluing system, was found to have a positive effect on the adhesion and cohesion ability of the mussel. Here, the formation of cysteinyldopa as biogenic connectivity in proteins is used to inspire a chemical pathway toward mussel-adhesive mimics. In an AA+BB polyaddition approach (Mussel-inspired polymerization, MIPoly) bisquinones and dithiols are used as monomers. The bisquinones are synthesized from the chemically diverse family of bisphenol monomers by oxidation with 2-iodoxybenzoic acid. The bisquinones and the dithiols react at room temperature in Michel-type polyaddition, leading to polymers with adhesive thiol-catechol-connectivities (TCCs) in their backbone. The detailed investigation of the MIPoly process, the formed TCC-polymers as well as low molecular model reactions enable the verification of the TCC-formation and confirm the Michael-type polyaddition mechanism. This chemical MIPoly is a robust reaction that promises ease of scale up and provides a modular approach to tailor adhesives. The generic character of the investigated MIPoly process is shown by synthesizing a TCC-polymer matrix. In adhesive tests, the synthesized TCC-polymers show adhesive properties on aluminum and poly(propylene). Furthermore, selected TCC-polymers can be used as underwater adhesives in seawater modeling aqueous environments.

Page generated in 0.0438 seconds